Шины pci express. Интерфейс PCI-Express, его основные характеристики и обратная совместимость

"Manhunt1908 "Поддержка материнской платой нового стандарта PCI Express v.3.0 на самом деле не является ее конкурентным преимуществом" У нас в основном получаеться что в PCI Express 3.0, на самом деле никаких реальных преимуществ у него нет, и скорость в современных играх он не повысит. то это уже не кому не нужно и не интересно,прироста нет,значит отстой,но ведь помимо игровых функций стандарта PCI Express v.3.0,у него есть и другие функции,в частности USB 3.0 на прямую зависит от материнки с функциеей поддержки PCI Express v.3.0,они ведь сами говорят что, Ну а наличие в компьютере двух-четырех портов USB 3.0, по сегодняшним меркам, просто необходимо,3.0 намного шустрей 2.0,это многие проверили на практике.Как не крути а материнка с PCI Express v.3.0 нужна,очень много новейших технологий привязанны именно к этому стандарту.врятли кто то откажеться иметь на борту своей материнки столь солиндый список,приведенный ниже!
SupremeFX IV
Идеальный звук
Данная материнская плата может похвастать высококачественной аудиосистемой на базе встроенной звуковой карты SupremeFX IV, отмеченной на печатной плате специальной линией. Емкие конденсаторы и электромагнитное экранирование способствуют высочайшему качеству звука. Кроме того, в состав SupremeFX IV входит выделенный усилитель для наушников.

GameFirst II
Функция GameFirst II на базе технологии cFos Traffic Shaping поможет установить приоритет использования интернет-канала различными приложениями. Получив максимальный приоритет, онлайн-игры будут работать максимально быстро, без раздражающих «лагов», и другие онлайн-приложения, имеющие низкий приоритет использования интернет-канала, не будут им в этом мешать. Для доступа к этой функции имеется удобный графический интерфейс в стиле ROG.

Контроллер Gigabit Ethernet
Сетевые контроллеры Intel славятся своей стабильной и эффективной работой при низком уровне загрузке центрального процессора.

Адаптер mPCIe Combo и контроллер Wi-Fi/Bluetooth 4.0
Чтобы сэкономить основные слоты расширения, данная материнская плата оснащается специальным дополнительным слотом с адаптером mPCIe Combo, к которому можно подключать устройства с интерфейсами mSATA (например, твердотельный диск) и mPCIe (беспроводные адаптеры Wi-Fi, 3G/4G, GPS и т.д.). Причем в комплект поставки уже входит mPCIe-карта с поддержкой Wi-Fi 802.11 a/b/g/n и Bluetooth 4.0.

Система охлаждения Fusion Thermo
Для охлаждения элементов системы питания на данной материнской плате используется специальный кулер ROG Fusion Thermo, который состоит из медного водяного блока, массивных радиаторов и тепловой трубки. Таким образом, его можно использовать как в составе системы жидкостного охлаждения, так и для обычного охлаждения с помощью вентиляторов. > Узнать больше
ROG Connect

Интерфейс для разгона и настройки ROG Connect
С помощью функции ROG Connect можно отслеживать состояние компьютера и настраивать его параметры в режиме реального времени с помощью ноутбука, подключив последний к основной системе по USB-кабелю.

Extreme Engine Digi+ II
Высокоэффективная цифровая система питания
Система управления энергопотреблением Extreme Engine Digi+ II отличается высокоэффективной работой благодаря изменяемой частоте широтно-импульсной модуляции цифровых стабилизаторов напряжения процессора и памяти. В ней также используются высококачественные конденсаторы японских производителей. Надежная и мощная система питания – залог успешного функционирования компьютера в режиме разгона!

ROG CPU-Z
Новое лицо известной утилиты
ROG CPU-Z – это индивидуализированная версия известной информационной утилиты от CPUID. Она обеспечивает ту же функциональность и точность выдаваемых о системе данных, что и оригинал, но обладает уникальным интерфейсом в стиле Republic of Gamers. С помощью ROG CPU-Z вы сможете получить полную информацию о процессоре и некоторых других компонентах своего компьютера.

Технологии multi-GPU
LucidLogix Virtu MVP
Высокая скорость в графических приложениях
Технология LucidLogix Virtu MVP представляет собой программное обеспечение для Windows 7, реализовывающее автоматическое переключение между встроенным в процессор графическим ядром и дискретной видеокартой. За счет перевода дискретной видеокарты в спящий режим в те моменты, когда ее ресурсы не нужны, достигается экономия электроэнергии, снижается уровень шума от компьютера и уменьшается температура внутри системного блока, что способствует более благоприятному режиму работы всех компонентов. Кроме того, можно использовать встроенное графическое ядро для ускорения основной видеокарты, что позволяет увеличить производительность на 60% (по результатам тестов в 3DMark Vantage). Стоит также отметить, что данная технология полностью совместима с функцией быстрого перекодирования видео Intel Quick Sync 2.0.

Если спросить, какой интерфейс следует использовать для твердотельного накопителя с поддержкой протокола NVMe, то любой человек (вообще знающий, что такое NVMe) ответит: конечно PCIe 3.0 x4! Правда, с обоснованием у него, скорее всего, возникнут сложности. В лучшем случае получим ответ, что такие накопители поддерживают PCIe 3.0 x4, а пропускная способность интерфейса имеет значение. Иметь-то имеет, однако все разговоры об этом начались только тогда, когда некоторым накопителям на некоторых операциях стало тесно в рамках «обычного» SATA. Но ведь между его 600 МБ/с и (столь же теоретическими) 4 ГБ/с интерфейса PCIe 3.0 x4 - просто пропасть, причем заполненная массой вариантов! А вдруг и одной линии PCIe 3.0 хватит, поскольку это уже в полтора раза больше SATA600? Масла в огонь подливают производители контроллеров, грозящиеся в бюджетной продукции перейти на PCIe 3.0 x2, а также тот факт, что у многих пользователей и такого-то нет. Точнее, теоретически есть, но высвободить их можно, лишь переконфигурировав систему или даже что-то в ней поменяв, чего делать не хочется. А вот купить топовый твердотельный накопитель - хочется, но есть опасения, что пользы от этого не будет совсем никакой (даже морального удовлетворения от результатов тестовых утилит).

Но так это или нет? Иными словами, нужно ли действительно ориентироваться исключительно на поддерживаемый режим работы - или все-таки на практике можно поступиться принципами ? Именно это мы сегодня и решили проверить. Пусть проверка будет быстрой и не претендующей на исчерпывающую полноту, однако полученной информации должно оказаться достаточно (как нам кажется) хотя бы для того, чтобы задуматься... А пока вкратце ознакомимся с теорией.

PCI Express: существующие стандарты и их пропускная способность

Начнем с того, что́ представляет собой PCIe и с какой скоростью этот интерфейс работает. Часто его называют «шиной», что несколько неверно идеологически: как таковой шины, с которой соединены все устройства, нет. На деле имеется набор соединений «точка-точка» (похожий на многие другие последовательные интерфейсы) с контроллером в середине и присоединенными к нему устройствами (каждое из которых само по себе может быть и концентратором следующего уровня).

Первая версия PCI Express появилась почти 15 лет назад. Ориентация на использование внутри компьютера (нередко - и в пределах одной платы) позволила сделать стандарт скоростным: 2,5 гигатранзакции в секунду. Поскольку интерфейс последовательный и дуплексный, одна линия PCIe (x1; фактически атомарная единица) обеспечивает передачу данных на скоростях до 5 Гбит/с. Однако в каждом направлении - лишь половина от этого, т. е. 2,5 Гбит/с, причем это полная скорость интерфейса, а не «полезная»: для повышения надежности каждый байт кодируется 10 битами, так что теоретическая пропускная способность одной линии PCIe 1.x составляет примерно 250 МБ/с в каждую сторону. На практике нужно еще передавать служебную информацию, и в итоге правильнее говорить о ≈200 МБ/с передачи пользовательских данных. Что, впрочем, на тот момент времени не только покрывало потребности большинства устройств, но и обеспечивало солидный запас: достаточно вспомнить, что предшественница PCIe в сегменте массовых системных интерфейсов, а именно шина PCI, обеспечивала пропускную способность в 133 МБ/с. И даже если рассматривать не только массовую реализацию, но и все варианты PCI, то максимумом были 533 МБ/с, причем на всю шину, т. е. такая ПС делилась на все подключенные к ней устройства. Здесь же 250 МБ/с (поскольку и для PCI приводится обычно полная, а не полезная пропускная способность) на одну линию - в монопольном использовании. А для устройств, которым нужно больше, изначально была предусмотрена возможность агрегирования нескольких линий в единый интерфейс, по степеням двойки - от 2 до 32, т. е. предусмотренный стандартом вариант х32 в каждую сторону мог передавать уже до 8 ГБ/с. В персональных компьютерах х32 не использовался из-за сложности создания и разведения соответствующих контроллеров и устройств, так что максимумом стал вариант с 16 линиями. Использовался он (да и сейчас используется) в основном видеокартами, поскольку большинству устройств столько не требуется. Вообще, немалому их количеству и одной линии вполне достаточно, но некоторые применяют с успехом и х4, и х8: как раз по накопительной теме - RAID-контроллеры или SSD.

Время на месте не стояло, и около 10 лет назад появилась вторая версия PCIe. Улучшения касались не только скоростей, но и в этом отношении был сделан шаг вперед - интерфейс начал обеспечивать 5 гигатранзакций в секунду с сохранением той же схемы кодирования, т. е. пропускная способность удвоилась. И еще раз она удвоилась в 2010 году: PCIe 3.0 обеспечивает 8 (а не 10) гигатранзакций в секунду, но избыточность уменьшилась - теперь для кодирования 128 бит используется 130, а не 160, как ранее. В принципе, и версия PCIe 4.0 с очередным удвоением скоростей уже готова появиться на бумаге, но в ближайшее время в железе мы ее массово вряд ли увидим. На самом деле и PCIe 3.0 до сих пор в массе платформ используется совместно с PCIe 2.0, потому что и производительность последней для многих сфер применения просто... не нужна. А где нужна - работает старый добрый метод агрегации линий. Только каждая из них стала за прошедшие годы вчетверо быстрее, т. е. PCIe 3.0 х4 - это PCIe 1.0 x16, самый быстрый слот в компьютерах середины нулевых. Именно этот вариант поддерживают топовые контроллеры SSD, и именно его рекомендуется использовать. Понятно, что если такая возможность есть - много не мало. А если ее нет? Будут ли возникать какие-то проблемы, и если да, то какие? Вот с этим-то вопросом нам и предстоит разобраться.

Методика тестирования

Провести тесты с разными версиями стандарта PCIe несложно: практически все контроллеры позволяют использовать не только поддерживаемый ими, но и все более ранние. Вот с количеством линий - сложнее: нам хотелось непосредственно протестировать и варианты с одной-двумя линиями PCIe. Используемая нами обычно плата Asus H97-Pro Gamer на чипсете Intel H97 полного набора не поддерживает, но кроме «процессорного» слота х16 (который обычно и используется) на ней есть еще один, работающий в режимах PCIe 2.0 х2 или х4. Вот этой тройкой мы и воспользовались, добавив к ней еще и режим PCIe 2.0 «процессорного» слота, дабы оценить, есть ли разница. Все-таки в этом случае между процессором и SSD посторонних «посредников» нет, а вот при работе с «чипсетным» слотом - есть: собственно чипсет, фактически соединяющийся с процессором тем же PCIe 2.0 x4. Можно было добавить еще несколько режимов работы, но основную часть исследования мы все равно собирались провести на другой системе.

Дело в том, что мы решили воспользоваться случаем и заодно проверить одну «городскую легенду», а именно поверие о полезности использования топовых процессоров для тестирования накопителей. Вот и взяли восьмиядерный Core i7-5960X - родственника обычно применяемого в тестах Core i3-4170 (это Haswell и Haswell-E), но у которого ядер в четыре раза больше. Кроме того, обнаруженная в закромах плата Asus Sabertooth X99 нам сегодня полезна наличием слота PCIe x4, на деле способного работать как х1 или х2. В этой системе мы протестировали три варианта х4 (PCIe 1.0/2.0/3.0) от процессора и чипсетные PCIe 1.0 х1, PCIe 1.0 х2, PCIe 2.0 х1 и PCIe 2.0 х2 (во всех случаях чипсетные конфигурации отмечены на диаграммах значком (c) ). Есть ли смысл сейчас обращаться к первой версии PCIe, с учетом того, что вряд ли найдется хоть одна плата с поддержкой только этой версии стандарта, способная загрузиться с NVMe-устройства? С практической точки зрения - нет, а вот для проверки априори предполагаемого соотношения PCIe 1.1 х4 = PCIe 2.0 х2 и подобных оно нам пригодится. Если проверка покажет, что масштабируемость шины соответствует теории, значит, и неважно, что нам не удалось пока получить практически значимые способы подключения PCIe 3.0 x1/х2: первый будет идентичен как раз PCIe 1.1 х4 или PCIe 2.0 х2, а второй - PCIe 2.0 х4. А они у нас есть.

В плане ПО мы ограничились только Anvil’s Storage Utilities 1.1.0: разнообразные низкоуровневые характеристики накопителей она измеряет неплохо, а ничего другого нам и не нужно. Даже наоборот: любое влияние других компонентов системы является крайне нежелательным, так что низкоуровневая синтетика для наших целей безальтернативна.

В качестве «рабочего тела» мы использовали Patriot Hellfire емкостью 240 ГБ . Как было установлено при его тестировании, это не рекордсмен по производительности, но его скоростные характеристики вполне соответствуют результатам лучших SSD того же класса и той же емкости. Да и более медленные устройства на рынке уже есть, причем их будет становиться все больше. В принципе, можно будет повторить тесты и с чем-нибудь более быстрым, однако, как нам кажется, необходимости в этом нет - результаты предсказуемы. Но не станем забегать вперед, а посмотрим, что же у нас получилось.

Результаты тестов

Тестируя Hellfire, мы обратили внимание на то, что максимальную скорость на последовательных операциях из него можно «выжать» лишь многопоточной нагрузкой, так что это тоже надо принимать во внимание на будущее: теоретическая пропускная способность на то и теоретическая, что «реальные» данные, полученные в разных программах по разным сценариям, будут больше зависеть не от нее, а от этих самых программ и сценариев - в том случае, конечно, когда не помешают обстоятельства непреодолимой силы:) Как раз такие обстоятельства мы сейчас и наблюдаем: выше уже было сказано, что PCIe 1.x x1 - это ≈200 МБ/с, и именно это мы и видим. Две линии PCIe 1.x или одна PCIe 2.0 - вдвое быстрее, и именно это мы и видим. Четыре линии PCIe 1.x, две PCIe 2.0 или одна PCIe 3.0 - еще вдвое быстрее, что подтвердилось для первых двух вариантов, так что и третий вряд ли будет отличаться. То есть в принципе масштабируемость, как и предполагалось, идеальная: операции линейные, флэш с ними справляется хорошо, так что интерфейс имеет значение. Флэш перестает справляться хорошо на PCIe 2.0 x4 для записи (значит, подойдет и PCIe 3.0 x2). Чтение «может» больше, но последний шаг дает уже полутора-, а не двукратный (каким он потенциально должен быть) прирост. Также отметим, что заметной разницы между чипсетным и процессорным контроллером нет, да и между платформами тоже. Впрочем, LGA2011-3 немного впереди, но на самую малость.

Все ровно и красиво. Но шаблоны не рвет : максимум в этих тестах составляет лишь немногим больше 500 МБ/с, а это вполне по силам даже SATA600 или (в приложении к сегодняшнему тестированию) PCIe 1.0 х4 / PCIe 2.0 х2 / PCIe 3.0 х1 . Именно так: не стоит пугаться выпуску бюджетных контроллеров под PCIe х2 или наличию лишь такого количества линий (причем версии стандарта 2.0) в слотах М.2 на некоторых платах, когда больше-то и не нужно. Иногда и столько не нужно: максимальные результаты достигнуты при очереди в 16 команд, что для массового ПО не типично. Чаще встречается очередь с 1-4 командами, а для этого обойтись можно и одной линией самого первого PCIe и даже самым первым SATA. Впрочем, накладные расходы и прочее имеют место быть, так что быстрый интерфейс полезен. Однако излишне быстрый - разве что не вреден.

А еще в этом тесте по-разному ведут себя платформы, причем с единичной очередью команд - принципиально по-разному. «Беда» вовсе не в том, что много ядер - плохо. Они тут все равно не используются, разве что одно, и не настолько, чтоб вовсю развернулся буст-режим. Вот и имеем разницу где-то в 20% по частоте ядер и полтора раза по кэш-памяти - она в Haswell-E работает на более низкой частоте, а не синхронно с ядрами. В общем, топовая платформа может пригодиться разве что для вышибания максимума «йопсов» посредством максимально многопоточного режима с большой глубиной очереди команд. Жаль только, что с точки зрения практической работы это совсем уж сферическая синтетика в вакууме:)

На записи положение дел принципиально не изменилось - во всех смыслах. Но, что забавно, на обеих системах самым быстрым оказался режим PCIe 2.0 х4 в «процессорном» слоте. На обеих! И при многократных проверках/перепроверках. Тут уж поневоле задумаешься, нужны ли эти ваши новые стандарты или лучше вообще никуда не торопиться...

При работе с блоками разного размера теоретическая идиллия разбивается о то, что повышение скорости интерфейса все же имеет смысл. Результирующие цифры такие, что хватило бы пары линий PCIe 2.0, но реально в таком случае производительность ниже, чем у PCIe 3.0 х4, пусть и не в разы. И вообще тут бюджетная платформа топовую «забивает» в куда большей степени. А ведь как раз такого рода операции в основном в прикладном ПО и встречаются, т. е. эта диаграмма - наиболее приближенная к реальности. В итоге нет ничего удивительного, что никакого «вау-эффекта» толстые интерфейсы и модные протоколы не дают. Точнее, переходящему с механики - дадут, но ровно такой же, какой ему обеспечит любой твердотельный накопитель с любым интерфейсом.

Итого

Для облегчения восприятия картины по больнице в целом мы воспользовались выдаваемым программой баллом (суммарным - по чтению и записи), проведя его нормирование по «чипсетному» режиму PCIe 2.0 x4: на данный момент именно он является наиболее массово доступным, поскольку встречается даже на LGA1155 или платформах AMD без необходимости «обижать» видеокарту. Кроме того, он эквивалентен PCIe 3.0 x2, который готовятся освоить бюджетные контроллеры. Да и на новой платформе AMD АМ4, опять же, именно этот режим как раз можно получить без влияния на дискретную видеокарту.

Итак, что мы видим? Применение PCIe 3.0 x4 при наличии возможности является, безусловно, предпочтительным, но не необходимым: NVMe-накопителям среднего класса (в своем изначально топовом сегменте) он приносит буквально 10% дополнительной производительности. Да и то - за счет операций в общем-то не столь уж часто встречающихся на практике. Для чего же в данном случае реализован именно этот вариант? Во-первых, была такая возможность, а запас карман не тянет. Во-вторых, есть накопители и побыстрее, чем наш тестовый Patriot Hellfire. В-третьих, есть такие области деятельности, где «атипичные» для настольной системы нагрузки - как раз вполне типичные. Причем именно там наиболее критично быстродействие системы хранения данных или, по крайней мере, возможность сделать ее часть очень быстрой. Но к обычным персональным компьютерам это все не относится.

В них, как видим, и использование PCIe 2.0 x2 (или, соответственно, PCIe 3.0 х1) не приводит к драматическому снижению производительности - лишь на 15-20%. И это несмотря на то, что потенциальные возможности контроллера в этом случае мы ограничили в четыре раза! Для многих операций и такой пропускной способности достаточно. Вот одной линии PCIe 2.0 уже недостаточно, поэтому контроллерам имеет смысл поддерживать именно PCIe 3.0 - и в условиях жесткой нехватки линий в современной системе это будет работать неплохо. Кроме того, полезна ширина х4 - даже при отсутствии поддержки современных версий PCIe в системе она все равно позволит работать с нормальной скоростью (пусть и медленнее, чем могло бы потенциально), если найдется более-менее широкий слот.

В принципе, большое количество сценариев, в которых узким местом оказывается собственно флэш-память (да, это возможно и присуще не только механике), приводит к тому, что четыре линии третьей версии PCIe на этом накопителе обгоняют одну первой примерно в 3,5 раза - теоретическая же пропускная способность этих двух случаев различается в 16 раз. Из чего, разумеется, не следует, что нужно спешно бежать осваивать совсем медленные интерфейсы - их время ушло безвозвратно. Просто многие возможности быстрых интерфейсов могут быть реализованы лишь в будущем. Или в условиях, с которыми обычный пользователь обычного компьютера никогда в жизни непосредственно не столкнется (за исключением любителей меряться известно чем). Собственно, и всё.

В этой статье мы расскажем о причинах успеха шины PCI и дадим описание высокопроизводительной технологии, которая приходит ей на смену – шины PCI Express. Также мы рассмотрим историю развития, аппаратные и программные уровни шины PCI Express, особенности её реализации и перечислим ее преимущества.

Когда в начале 1990-x гг. она появилась, то по своим техническим характеристикам значительно превосходила все существовавшие до того момента шины, такие, как ISA, EISA, MCA и VL-bus. В то время шина PCI(Peripheral Component Interconnect - взаимодействие периферийных компонентов), работавшая на частоте 33 Мгц, хорошо подходила для большинства периферийных устройств. Но сегодня ситуация во многом изменилась. Прежде всего, значительно возросли тактовые частоты процессора и памяти. Например, тактовая частота процессоров увеличились с 33 МГц до нескольких ГГц, в то время как рабочая частота PCI увеличилась всего до 66 МГц. Появление таких технологий, как Gigabit Ethernet и IEEE 1394B грозило тем, что вся пропускная способность шины PCI может уйти на обслуживание одного-единственного устройства на основе данных технологий.

При этом архитектура PCI имеет ряд преимуществ по сравнению с предшественниками, поэтому полностью пересматривать было нерационально. Прежде всего, она не зависит от типа процессора, поддерживает буферную изоляцию, технологию bus mastering (захват шины) и технологию PnP в полном объеме. Буферная изоляция означает, что шина PCI действует независимо от внутренней шины процессора, что дает возможность шине процессора функционировать независимо от скорости и загруженности системной шины. Благодаря технологии захвата шины периферийные устройства получили возможность непосредственно управлять процессом передачи данных по шине, вместо того, чтобы ожидать помощи от центрального процессора, что отразилось бы на производительности системы. Наконец, поддержка Plug and Play позволяет осуществлять автоматическую настройку и конфигурирование пользующихся ею устройств и избежать возни с джамперами и переключателями, которая изрядно портила жизнь владельцам ISA-устройств.

Несмотря на несомненный успех PCI, в нынешнее время она сталкивается с серьезными проблемами. Среди них – ограниченная пропускная способность, недостаток функций передачи данных в реальном времени и отсутствие поддержки сетевых технологий нового поколения.

Сравнительные характеристики различных стандартов PCI

Следует учесть, что реальная пропускная способность может быть меньше теоретической из-за принципа работы протокола и особенностей топологии шины. К тому же общая пропускная способность распределяется между всеми подключенными к ней устройствами, поэтому, чем больше устройств сидит на шине, тем меньшая пропускная способность достается каждому из них.

Такие усовершенствования стандарта, как PCI-X и AGP были призваны устранить ее главный недостаток – низкую тактовую частоту. Однако увеличение тактовой частоты в этих реализациях повлекло за собой уменьшение эффективной длины шины и количества разъемов.

Новое поколение шины - PCI Express (или сокращенно PCI-E), было впервые представлено в 2004 году и было призвано решить все те проблемы, с которыми столкнулась её предшественница. Сегодня большая часть новых компьютеров снабжается шиной PCI Express. Хотя стандартные слоты PCI в них тоже присутствуют, однако не за горами то время, когда шина станет достоянием истории.

Архитектура PCI Express

Архитектура шины имеет многоуровневую структуру, как показано на рисунке.

Шина поддерживает модель адресации PCI, что позволяет работать с ней всем существующим на данный момент драйверам и приложениям. Кроме того, шина PCI Express использует стандартный механизм PnP, предусмотренный предыдущим стандартом.

Рассмотрим предназначение различных уровней организации PCI-E. На программном уровне шины формируются запросы чтения/записи, которые передаются на транспортном уровне при помощи специального пакетного протокола. Уровень данных отвечает за помехоустойчивое кодирование и обеспечивает целостность данных. Базовый аппаратный уровень состоит из двойного симплексного канала, состоящего из передающей и принимающей пары, которые вместе называются линией. Общая скорость шины в 2,5 Гб/с означает, что пропускная способность для каждой линии PCI Express составляет 250 Мб/c в каждую сторону. Если принять во внимание потери на накладные расходы протокола, то для каждого устройства доступно около 200 Мб/c. Эта пропускная способность в 2-4 раза выше, чем та, которая была доступна для устройств PCI. И, в отличие от PCI, в том случае, если пропускная способность распределяется между всеми устройствами, то она в полном объеме достается каждому устройству.

На сегодняшний день существует несколько версий стандарта PCI Express, различающихся своей пропускной способностью.

Пропускная способность шины PCI Express x16 для разных версий PCI-E, Гб/c:

  • 32/64
  • 64/128
  • 128/256

Форматы шины PCI-E

На данный момент доступны различные варианты форматов PCI Express, в зависимости от предназначения платформы – настольный компьютер, ноутбук или сервер. Серверы, требующие большую пропускную способность, имеют больше слотов PCI-E, и эти слоты имеют большее число соединительных линий. В противоположность этому ноутбуки могут иметь лишь одну линию для среднескоростных устройств.

Видеокарта с интерфейсом PCI Express x16.

Платы расширения PCI Express очень похожи на платы PCI, однако разъемы PCI-E отличаются повышенным сцеплением, что позволяет быть уверенным в том, что плата не выскользнет из слота из-за вибрации или при транспортировке. Существует несколько форм-факторов слотов PCI Express, размер которых зависит от количества используемых линий. Например, шина, имеющая 16 линий, обозначается как PCI Express x16. Хотя общее количество линий может достигать 32, на практике большинство материнских плат в настоящее время оснащены шиной PCI Express x16.

Карты меньших форм-факторов могут подключаться в разъемы для больших без ущерба для работоспособности. Например, карта PCI Express х1 может подключаться в разъем PCI Express x16. Как и в случае шины PCI, для подключения устройств при необходимости можно использовать РCI Express-удлинитель.

Внешний вид разъемов различных типов на материнской плате. Сверху вниз: слот PCI-X, слот PCI Express х8, слот PCI, слот PCI Express х16.

Express Card

Стандарт Express Card предлагает очень простой способ добавления оборудования в систему. Целевым рынком для модулей Express Card являются ноутбуки и небольшие ПК. В отличие от традиционных плат расширения настольных компьютеров, карта Express может подключаться к системе в любой момент во время работы компьютера.

Одной из популярных разновидностей Express Card является карта PCI Express Mini Card, разработанная в качестве замены карт форм-фактора Mini PCI. Карта, созданная в этом формате, поддерживает как PCI Express, так и USB 2.0. Размеры PCI Express Mini Card составляют 30×56 мм. Карта PCI Express Mini Card может подключаться к PCI Express х1.

Преимущества PCI-E

Технология PCI Express позволила получить преимущество по сравнению с PCI в следующих пяти областях:

  1. Более высокая производительность. При наличии всего одной линии пропускная способность PCI Express в два раза выше, чем у PCI. При этом пропускная способность увеличивается пропорционально количеству линий в шине, максимальное количество которых может достигать 32. Дополнительным преимуществом является то, что информация по шине может передаваться одновременно в обоих направлениях.
  2. Упрощение ввода-вывода. PCI Express использует преимущества таких шин, как AGP и PCI-X и обладает при этом менее сложной архитектурой, а также сравнительной простотой реализации.
  3. Многоуровневая архитектура. PCI Express предлагает архитектуру, которая может подстраиваться к новым технологиям и не требует значительного обновления ПО.
  4. Технологии ввода/вывода нового поколения. PCI Express дает новые возможности получения данных при помощи технологии одновременных передач данных, обеспечивающей своевременное получение информации.
  5. Простота использования. PCI-E значительно упрощает обновление и расширение системы пользователем. Дополнительные форматы плат Express, такие, как ExpressCard, значительно увеличивают возможности добавления высокоскоростных периферийных устройств в серверы и ноутбуки.

Заключение

PCI Express – это технология шины для подключения периферийных устройств, пришедшая на смену таким технологиям как ISA, AGP и PCI. Её применение значительно увеличивает производительность компьютера, а также возможности пользователя по расширению и обновлению системы.

Коротко об истории...

Впервые отдельный интерфейс, призванный стать заменой шины PCI для видеокарт, был представлен в 1997 году. AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) - именно так представила свою новую разработку компания Intel одновременно с официальным анонсом чипсета для процессоров Intel Pentium II.

Заявленные преимущества AGP перед его предшественником PCI были существенны:

  • более высокая частота работы (66 МГц);
  • увеличенная пропускная способность между видеокартой и системной шиной;
  • прямая передача информации между видеокартой и оперативной памятью, минуя процессор;
  • улучшенная система питания;
  • высокоскоростной доступ к общей памяти.

Должного развития стандарт AGP 1x (спецификация AGP 1.0) не получил из-за низкой скорости работы с памятью и был практически сразу же усовершенствован, а его скорость удвоена - так появился интерфейс AGP 2x. Передавая за один такт 32 бита (4 байта), порт AGP 2x мог выдавать невиданную по тем временам пиковую производительность 66.6х4х2=533 М B / s .

В 1998 году увидел свет стандарт AGP 4x (спецификация AGP 2.0), обеспечивающий передачу до 4 блоков информации за один такт. При этом сигнальное напряжение порта было понижено с 3.3 до 1.5 В. Максимальная пропускная способность AGP 4x стала около 1 GB / s . В дальнейшем развитие спецификаций носило затяжной характер - причиной тому послужила весьма низкая скорость существовавшего на тот момент парка видеоускорителей, а также низкая скорость обмена с оперативной памятью.

Как только технический прогресс "уперся" в шину, которая оказалась слишком мала для передачи огромных потоков информации современными видеокартами, был утвержден новый стандарт - AGP 8x (спецификация AGP 3.0). Как вы уже догадались, он может передавать до 8 блоков информации за один такт и обладает пиковой пропускной способностью 2 GB / s . Шина AGP 8x имеет обратную совместимость с AGP 4x.

Отрасль высоких технологий всегда идет стремительно ввысь. Наращиваются объемы передаваемых и пропускаемых данных, растут текстуры и их качество, все это непременно заставляет каждого из производителей устраивать себе встряску и выдавать "на-гора" что-нибудь новенькое и высокотехнологичное (стандарт, спецификации, протокол, интерфейс), который свяжет с собой новый виток в сфере hi - tech .

Официально первая базовая спецификация PCI Express появилась в июле 2002 года, тем самым был ознаменован день постепенного "ухода из жизни" AGP 8x…

Введение

На данный момент современный набор логики Intel P45/X48 имеет официальную поддержку спецификаций PCI Express 2.0, чем не мог похвастаться весьма распространенный Intel P35. Для тех, кто еще только собирается приобрести современную плату на платформе Intel, выбор остается вполне очевидным - чипсет P45/X48, и у вас не возникнет дилеммы "хватит или не хватит" PCI Express 1.1 для нынешней hi-end или middle-end видеокарты. А как же быть владельцам P35-ых? Стоит ли снова бежать в магазин?

В нашем сегодняшнем материале мы попытаемся расставить все точки над "I" касательно преимуществ PCI-E 2.0 над PCI-E 1.1 для современных ускорителей. Также экспериментальным путем мы проанализируем производительность видеокарт при работе с различными интерфейсами, на основе чего и будет сделан вывод о практической ценности PCI-E 2.0.

И перед тем, как приступить к каким-либо объективным тестам, давайте немного углубимся в теорию, а именно разберемся, как вообще это все работает.

PCI - Express - коротко о главном

Как уже упоминалось выше, базовая спецификация PCI Express появилась в июле 2002 года. Благодаря высокой скорости и пиковой производительности шина PCI Express не оставляет шансов своему предшественнику AGP. По своей программной модели новый интерфейс PCI-E во многом аналогичен PCI, что позволяет легко адаптировать нынешний парк всевозможных устройств к новому интерфейсу без значительных софтверных "подгонок".

Принцип работы PCI Express основан на последовательной передаче данных. Шина представляет собой пакетную сеть с топологией типа "звезда". При взаимодействии PCI-E устройств используется двунаправленное соединение типа "точка-точка", получившее название "Line" (линия). Каждое соединение PCI Express может состоять из одной (1х) или множества линий (4х, 16х и т.д).

Для базовой конфигурации PCI-Express 1х теоретическая пропускная способность составляет 250 MB/s в каждом направлении (передача/прием). Соответственно, для PCI-E x16 это значение равно 250 MB/s х 16 = 4 GB/s.

Примечателен тот факт, что с физической стороны интерфейс позволяет, например, любой плате с интерфейсом PCI-E 1х уверенно работать не только в штатном, но и в любом другом слоте PCI Express большей пропускной способности (4х, 16х и т.д.). При этом максимальное количество задействованных линий зависит только от свойств устройства.

Во всех высокоскоростных протоколах всегда остро встает вопрос помехозащищенности. На этот счет в PCI Express используется уже давно известная схема 8/10 или избыточного трафика (8 бит данных, передаваемых по каналу, заменяются на 10 бит, таким образом, генерируется дополнительная информация, около 20% от общего "потока").

PCI Express 2.0

Стандарт был официально утвержден 15 января 2007 года. Во второй ревизии PCI Express значительно увеличилась пропускная способность одного канала - до 5 Gb/s (PCI Express 1.x - 2.5 Gb/s). Это означает, что теперь для линии x16 максимальная скорость передачи данных может достигать 8 GB/s в обоих направлениях против 4 GB/s для старого PCI Express 1.х.

Примечательным фактом является то, что PCI Express 2.0 полностью совместим с PCI Express 1.1. На деле это означает, что старые видеокарты буду спокойно работать в системных платах с новыми разъемами, и новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.

Пожалуй, на этом с теорией и основными особенностями PCI Express давайте закруглимся, пора приступать к соответствующим тестам, чем мы, собственно говоря, и займемся, правда, чуть ниже, а пока давайте детально познакомимся с участниками тестирования.

Об участниках тестирования

К сожалению, охватить больший набор графических ускорителей на момент тестирования не представлялось возможным, что в последующем мы обязательно исправим. Видеокарты класса Low-End исключены из тестов преднамеренно, так как они малопригодны для режимов с высоким разрешением (свыше 1280х1024) при максимальной детализации картинки, где как раз и могут быть выявлены преимущества PCI-E 2.0 над младшим PCI-E 1.1.

Видеокарта

Poin Of View GeForce GTX 280

POV GeForce 9600 GT 512 MB Extreme Overclock

Palit HD 4850 Sonic

Кодовое название чипа

Техпроцесс

Стандарт PCI Express является одной из основ современных компьютеров. Слоты PCI Express уже давно занимают прочное место на любой материнской плате декстопного компьютера, вытесняя другие стандарты, например, такие как PCI. Но даже стандарт PCI Express имеет свои разновидности и отличающийся друг от друга характер подключения. На новых материнских платах, начиная примерно с 2010 года, можно увидеть на одной материнской плате целую россыпь портов, обозначенных как PCIE или PCI-E , которые могут отличаться по количеству линий: одной x1 или нескольких x2, x4, x8, x12, x16 и x32.

Итак, давайте выясним почему такая путаница среди казалось бы простого периферийного порта PCI Express. И какое предназначение у каждого стандарта PCI Express x2, x4, x8, x12, x16 и x32?

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. - взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее - все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.


PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах: x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями . Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами - уже 4 линии х4 . И так далее можно расписать кассиров по количеству линий, умножая на 2.


Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с, В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот - x4 или x8 , например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.


Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с, а PCI Express 5.0 будет задействовать 32 ГТ/с.

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы - помните: восемь бит в одном байте).

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.