Чем отличаются альфа бета и гамма излучения. Тестирование онлайн

Достаточно большой перечень вопросов породило необычайное открытие радиоактивности. Величайший прорыв в данной сфере сделал ученый Э. Резерфорд, который поместил в магнитное поле особый излучатель, а именно — радиоактивный. В итоге пучок распался на три составляющие.

Особенности излучения

На основе серии опытов, стало известно, что альфа-излучение – это поток положительных частиц, а их параметры абсолютно идентичны тем, которые имеются у ядер гелия. Что касается атома гелия, то у него только 2 электрона.

Помимо альфа-лучей, обнаружены гамма и бета, каждый из них обладает особой силой, имеет радиоактивность. Таким образом, можно смело утверждать, что излучение альфа – это дважды ионизированный атом гелия. Альфа является положительно заряженным, гамма – нейтральным, а что касается бета, то он является отрицательным лучом. Альфа, гамма, а также бета имеют сильные отличия, касающиеся способности проникающей. Простыми словами, гамма, альфа, бета отличны тем, что они поглощаются разными компонентами с различной интенсивностью.

Гамма – это лучи, напоминающие излучение рентгена, но их проникающая способность гораздо выше. Это приводило к мысли, что гамма лучи являются электромагнитными волнами. Однако сомнения отошли в сторону, когда обнаружили дифракцию гамма лучей на особых кристаллах также была определена их длина. Как ни странно, длина вол гамма лучей очень маленькая, а именно – до 10-11 сантиметров.

Что касается бета-лучей, то их рассматривали в качестве заряженной частицы. С бета было намного легче проводить эксперименты. Цель проведенных исследований – определит массу, заряд бета-лучей. Было установлено, что бета-частицы являются электронами, скорость движения которых приближена к скорости света.

Альфа-излучения имеют источники:

  • реакторы;
  • объекты промышленности урановой;
  • распад весьма тяжелых химических элементов, в результате чего наблюдается проявление ядер гелия;
  • эксперименты, которые осуществляются на ускорителях частиц, лабораториях радиоизотопных;
  • ускорение гелия.

Каждый из указанных лучей имеет собственный спектр излучения. Простыми словами, спектр – это распределение частиц согласно величинам измеряемым, которое приведено к определенным условиям. Спектр различают по виду частиц. Что касается альфа-спектра, то его принято считать дискретным.

Методы защиты

Альфа-излучения имеют свой спектр, а также определенную радиоактивность, которые способны оказывать пагубное воздействие на человека. Поражающая радиоактивность потока альфа-частиц не слишком велика.

Принято считать, что спектр подобного излучения неопасен, но не стоит забывать про радиоактивность. Проникновение массивных частиц в организм человека вместе с водой, едой или же сквозь кожный покров, имеется риск серьезного отравления. Осложнение возникает по причине мощного ионизирующего воздействия, формирования кислорода, окислителя, водорода свободного. За счет того, радиоактивность оказывает воздействие на мозг, скапливаясь в нем, наблюдается появления множества патологий, которые активно снижают адаптационные, защитные функции организма.

Не смотря не радиоактивность, альфа-частицы признаны наиболее безопасными, так как после внешнего облучения не требуются защитные средства. Опасность поджидает от внутреннего облучения, когда радиоактивность частиц действует более хитро. Для предотвращения неприятностей, достаточно не допустить попадание в организм радионуклидов, используя индивидуальную защиту:

  • одежда, сделанная из специального материала;
  • если кожа чувствительная, можно пользоваться кремом, дерматологической пастой;
  • для глаз подойдут щитки из специального оргстекла.

В перечень рекомендаций входит информация о воздействии пищевых продуктов на выведение, нейтрализацию радионуклидов в организме. Такая способность имеется у продуктов, которые богаты витамином С, В. Отлично помогают перепелиные яйца, но если доза облучения не слишком большая. Они считаются богатым источником аминокислот, витаминов и микроэлементов. Из растений, которые способны помочь, можно выделить топинамбур.

Сфера применения излучения

Кроме защиты от альфа-частиц, была разработана особая терапия с их использованием. Лечебный сеанс позволяет пользоваться изотопами, которые были получены при излучении, а именно – торон, радон, которые обладают небольшими сроками жизни, быстро ликвидируются из организма.

Примеры применения альфа-излучения в медицине:

  • пероральное применение воды радоновой;
  • прием ванны радоновой;
  • дыхательная процедура воздухом с радонами.

Доктора абсолютно и твердо уверены, что влияние альфа-частиц можно фокусировать, уничтожая раковые клетки. Подобная целебная терапия способна оказать седативное, обезболивающее, противовоспалительное влияние на человека. Рекомендовано к лечению опорно-двигательного аппарата, сердечно-сосудистых и гинекологических недугов. Процедура проводится строго под контролем лечащего врача и специально обученного человека.

альфа, бета- (группа корпускулярных излучений), гамма-излучения- (группа волновых).

Корпускулярные представляют собой потоки невидимых элементарных частиц, имеющих массу и диаметр. Волновые излучения имеют квантовую природу. Это электромагнитные волны в сверхкоротковолновом диапазоне.

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 тыс. км/с. Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна: длина пробега в воздухе составляет 3-11 см, а в жидких и твердых средах - сотые доли миллиметра. Лист плотной бумаги полностью задерживает их. Надежной защитой от альфа-частиц является также одежда человека.Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно.

Бета-излучение - поток бета-частиц, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (300 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чем у альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях - до 3 см, металле - до 1 см. На практике бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в несколько миллиметров. Одежда поглощает до 50 % бета-частиц.При внешнем облучении организма на глубину около 1 мм проникает 20-25 % бета-частиц. Поэтому внешнее бета-облучение представляет серьезную опасность лишь при попадании радиоактивных веществ непосредственно на кожу (особенно на глаза) или же внутрь организма.

Гамма-излучение - это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны 10~8-10~и см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц.Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной: воды - 23 см, стали - около 3, бетона - 10, дерева - 30 см.Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении.Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец, который для этих целей используется наиболее часто.

100.Действие радиации на человека

По сравнению с другими повреждающими факторами ионизирующее излучение (радиация) изучено лучше всего. Как радиация действует на клетки? При делении атомных ядер высвобождается большая энергия, способная отрывать электроны от атомов окружающего вещества. Этот процесс называется ионизаций, а несущее энергию электромагнитное излучение – ионизирующим. Ионизированный атом меняет свои физические и химические свойства. Следовательно, изменяются свойства молекулы, в которую он входит. Чем выше уровень радиации, тем больше число актов ионизации, тем больше будет поврежденных клеток. Погибшие клетки организм замещает новыми в течение дней или недель, а клетки-мутанты эффективно выбраковывает. Этим занимается иммунная система. Но иногда защитные системы дают сбой. Результатом в отдаленном времени может быть рак или генетические изменения у потомков, в зависимости от типа поврежденной клетки (обычная или половая клетка). Ни тот, ни другой исход не предопределен заранее, но оба имеют некоторую вероятность. Самопроизвольные случаи рака называют спонтанными. Если установлена ответственность того или иного агента за возникновение рака, говорят, что рак был индуцированным.

Если доза облучения превышает природный фон в сотни раз, это становится заметным для организма. Важно не то, что это радиация, а то, что защитным системам организма труднее справляться с возросшим числом повреждений. Из-за участившихся сбоев возникает дополнительные «радиационные» раки. Их количество может составлять несколько процентов от числа спонтанных раков.

Очень большие дозы, это - в тысячи раз выше фона. При таких дозах основные трудности организма связаны не с измененными клетками, а с быстрой гибелью важных для организма тканей. Организм не справляется с восстановлением нормального функционирования самых уязвимых органов, в первую очередь, красного костного мозга, который относится к системе кроветворения. Появляются признаки острого недомогания - острая лучевая болезнь. Если радиация не убьет сразу все клетки костного мозга, организм со временем восстановится. Выздоровление после лучевой болезни занимает не один месяц, но дальше человек живет нормальной жизнью.Вылечившись после лучевой болезни, люди несколько чаще, чем их необлученные сверстники болеют раком.На несколько процентов.Это следует из наблюдений за пациентами в разных странах мира, прошедшими курс радиотерапии и получившими достаточно большие дозы облучения, за сотрудниками первых ядерных предприятий, на которых еще не было надежных систем радиационной защиты, а также за пережившими атомную бомбардировку японцами, и чернобыльскими ликвидаторами. Среди перечисленных групп самые высокие дозы были у жителей Хиросимы и Нагасаки. За 60 лет наблюдений у 86,5 тысяч человек с дозами в 100 и более раз выше природного фона было на 420 случаев смертельного рака больше, чем в контрольной группе (увеличение примерно на 10 %). В отличие от симптомов острой лучевой болезни, которые проявляются через часы или дни, рак возникает не сразу, может быть, через 5, 10 или 20 лет. Для разных локализаций рака скрытый период разный. Быстрее всего, в первые пять лет, развивается лейкоз (рак крови). Именно это заболевание считается индикатором радиационного воздействия при дозах облучения в сотни и тысячи раз выше фона.

Результат воздействия

Доза от естественных источников в год

Предельно допустимая доза профессионального облучения в год

Уровень удвоения вероятности генных мутаций

Однократная доза оправданного риска в чрезвычайных обстоятельствах

Доза возникновения острой лучевой болезни

Без лечения 50% облученных умирает в течение 1-2 месяцев вследствие нарушения деятельности клеток костного мозга

Смерть наступает через 1-2 недели вследствие поражений главным образом желудочно кишечного тракта

Смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Радиоактивный препарат помещался на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу (рис. 7.9). Вся установка размещалась в вакууме.

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно, точно против канала. В магнитном поле пучок распадался натри пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательная компонента излучения отклонялась магнитным полем гораздо больше, чем положительная. Третья составляющая не отклонялась магнитным полем. Положительно заряженная компонента получила название альфа-лучей,отрицательно заряженная - бета-лучей и нейтральная - гамма-лучей (α-лучи, β-лучи,γ-лучи).

Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают α-лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего α-излучению.

Гораздо меньше поглощаются при прохождении через вещество β-лучи. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи.

Как и в случае рентгеновских лучей, интенсивность поглощения γ-лучей увеличивается с ростом атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении через такую пластину их интенсивность убывает лишь вдвое.

Физическая природа α-, β- и γ-лучей, очевидно, различна.

Гамма-лучи

По своим свойствам γ-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводит на мысль, что γ-лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция γ-лучей на кристаллах и измерена длина волны. Она оказалась очень малой - от 10–8 до 10–11 см.

На шкале электромагнитных волн у-лучи непосредственно следуют за рентгеновскими. Скорость распространения в вакууме у γ-лучей такая же, как у всех электромагнитных волн, - около 300000 км/с.

Бета-лучи

С самого начала α- и β-лучирассматривались как потоки заряженных частиц. Проще всего было экспериментировать с β-лучами,так как они сильно отклоняются как в магнитном, так и в электрическом поле.

Основная задача состояла в определении заряда и массы частиц. При исследовании отклонения β-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости β-частиц, испущенных данным радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями.

Альфа-частицы

Труднее оказалось выяснить природу а-частиц, так как они слабо отклоняются магнитным и электрическим полями.

Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в электрическом и магнитном полях. Оно оказалось примерно в 2 раза меньше, чем у протона - ядра атома водорода. Для определения массы α-частицы нужно было измерить еще ее заряд.

Это было сделано лишь после изобретения счетчика Гейгера. С его помощью подсчитывалось число частиц, попадающих в единицу времени внутрь металлического цилиндра, соединенного с электрометром (рис. 7.10). Сквозь очень тонкое окошко α-частицы могут проникать внутрь счетчика и регистрироваться им. Электрометр позволяет определить суммарный заряд α-частиц, испущенных за определенный интервал времени. Такого рода опыты показали, что заряд α-частицы равен удвоенному элементарному заряду. Следовательно, ее масса в 4 раза превосходит массу атома водорода, т. е. равна массе атома гелия. Таким образом, α-частица оказалась ядром атома гелия .

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном а-распаде образуется гелий. Собирая α-частицы внутри специального резервуара на протяжении нескольких дней, Резерфорд с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая α-частица захватывала два электрона и превращалась в атом гелия).

Примечание

Литература

Мякишев Г.Я. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики. - М.: Дрофа, 2002. - С. 349-351.

Понятие «излучение» включает в себя весь диапазон электромагнитных волн, а также электрический ток, радиоволны, ионизирующее излучение. При последнем изменяется физическое состояние атомов и их ядер, превращая их в заряженные ионы или продукты ядерных реакций. Мельчайшие частицы обладают энергией, которая постепенно теряется при взаимодействии со структурными единицами. В результате движения вещество, через которое проникают элементы, ионизируется. Глубина проникновения различна для каждой частицы. Из-за способности изменять вещества радиоактивный свет наносит вред организму. Какие виды излучений существуют?

Корпускулярное испускание. Альфа-частицы

Данный вид представляет собой поток радиоактивных элементов, чья масса отлична от нуля. Примером является альфа и бета-излучение, а также электронное, нейтронное, протонное и мезонное. Альфа-частицы - это ядра атомов, которые испускаются при распаде некоторых радиоактивных атомов. Они состоят их двух нейтронов и двух протонов. Альфа-излучение - это ядра атомов гелия, которые положительно заряжены. Естественное испускание характерно для неустойчивых радионуклидов рядов тория, урана. Альфа-частицы выходят из ядра со скоростью до 20 тысяч км/сек. По пути движения они образуют сильную ионизацию среды, отрывая электроны из орбит атомов. Ионизация лучами приводит к химическим изменениям в веществе, а также к нарушению ее кристаллической структуры.

Характеристика альфа-излучения

Лучи такого вида представляют собой альфа-частицы массой 4,0015 атомных единиц. Магнитный момент и спин равны нулю, а заряд частиц - удвоенному элементарному заряду. Энергия альфа-лучей находится в пределах 4-9 МэВ. Ионизирующее альфа-излучение проявляется при потере атома своего электрона и превращении его в ион. Выбивание электрона происходит за счет большого веса альфа-частиц, которые больше его практически в семь тысяч раз. При прохождении через атом и отрыве каждого отрицательно заряженного элемента частицы теряют свою энергию и скорость. Способность ионизировать материю теряется, когда вся энергия потрачена и альфа-частица преобразуется в атом гелия.

Бета-излучение

Это процесс, при котором электроны и позитроны образуются при бета-распаде элементов от самых легких до самых тяжелых. Бета-частицы сотрудничают с электронами атомных оболочек, передают им часть энергии и вырывают их с орбит. В этом случае образуется положительный ион и свободный электрон. Альфа и бета - излучение обладают разной скоростью движения. Так, для второго вида лучей она приближается к скорости света. Поглотить бета-частицы можно с помощью слоя алюминия толщиной в 1 мм.

Гамма-лучи

Образуются при разложении радиоактивных ядер, а также элементарных частиц. Это коротковолновый тип электромагнитного излучения. Оно образуется при переходе ядра из более возбужденного энергетического состояния в менее возбужденное. Имеет короткую длину волны, поэтому обладает высокой проникающей способностью, что может нанести серьезный вред здоровью человека.

Свойства

Частицы, которые образуются при распаде ядер элементов, могут по-разному взаимодействовать с окружающей средой. Такая связь находится в зависимости от массы, заряда, энергии частиц. К свойствам радиоактивного излучения можно отнести следующие параметры:

1. Проникающую способность.

2. Ионизацию среды.

3. Экзотермическую реакцию.

4. Воздействие на фотоэмульсию.

5. Возможность вызвать свечение люминесцирующих веществ.

6. При длительном воздействии возможны химические реакции и распад молекул. Например, изменяется цвет предмета.

Перечисленные свойства используются при обнаружении излучений по причине неспособности человека улавливать их своими чувствами.

Источники излучений

Существуют несколько причин испусканий частиц. Это могут быть земные или космические объекты, которые содержат радиоактивные вещества, технические устройства, выделяющие ионизирующие излучение. Также причинами появления радиоактивных частиц могут быть ядерно-технические установки, контрольно-измерительные устройства, медицинские препараты, разрушение хранилищ радиационных отходов. Опасные источники делятся на две группы:

  1. Закрытые. При работе с ними излучение не проникает в окружающую среду. Примером будет являться радиационная техника на АЭС, а также аппаратура в рентген-кабинете.
  2. Открытые. В этом случае облучению подвергается окружающая среда. Источниками могут быть газы, аэрозоли, радиоактивные отходы.

Элементы ряда урана, актиния и тория являются естественными радиоактивными элементами. При их распаде происходит излучение альфа-, бета-частиц. Источниками альфа-лучей является полоний с атомной массой 214 и 218. Последний представляет собой продукт распада радона. Это ядовитый в больших количествах газ, который проникает из почвы и накапливается в подвалах домов.

Источники альфа-излучения высоких энергий представляют собой разнообразные ускорители заряженных частиц. Одним из таких устройств является фазотрон. Он представляет собой циклический резонансный ускоритель с постоянным управляющим магнитным полем. Частота ускоряющего электрического поля будет медленно изменяться с периодом. Частицы движутся по раскручивающийся спирали и ускоряются до энергии, равной 1 ГэВ.

Способность проникать через вещества

Альфа-, бета-, гамма-излучения обладают определенным пробегом. Так, движение альфа-частиц в воздухе составляет несколько сантиметров, когда бета-частицы способны пройти несколько метров, а гамма-лучи - до сотни метров. Если человек испытал внешнее альфа-излучение, проникающая способность которого равна поверхностному слою кожи, то он будет в опасности только в случае открытых ран на теле. Сильный вред наносит употребление пищи, облученной данными элементами.

Бета-частицы могут внедриться в организм только на глубину не больше 2 см, а вот гамма-частицы способны вызвать облучение всего тела. Лучи последних частиц могут задержать только бетонные или свинцовые плиты.

Альфа-излучение. Влияние на человека

Энергии этих частиц, образующихся при радиоактивном распаде, не хватит на преодоление начального слоя кожи, поэтому внешнее облучение не несет вреда организму. Но если источником образования альфа-частиц служит ускоритель и их энергия достигает выше десятков МэВ, то угроза нормальному функционированию организма присутствует. Огромный вред наносит непосредственное проникновение внутрь тела радиоактивного вещества. Например, через вдыхание отравленного воздуха или через пищеварительный тракт. Альфа-излучение способно в минимальных дозах вызвать у человека развитие лучевой болезни, которая часто заканчивается смертью пострадавшего.

Альфа-лучи нельзя обнаружить с помощью дозиметра. Попав в организм, они начинают облучать близлежащие клетки. Организм вынуждает клетки делиться быстрее, чтобы возобновить пробел, но заново рожденные опять подвергаются вредному воздействию. Это приводит к потере генетической информации, мутациям, образованию злокачественных опухолей.

Допустимые пределы облучения

Норма ионизирующего излучения в России регулируется «Нормами радиационной безопасности» и «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений». Согласно данным документам, пределы облучения разработаны для следующих категорий:

1. «А». К ней относятся сотрудники, которые работают с источником излучений на постоянной основе или временно. Допустимый предел рассчитывается как индивидуальная эквивалентная доза внешнего и внутреннего излучения за год. Это так называемая предельно допустимая доза.

2. «Б». Категория включает часть населения, которая может подвергаться воздействию источников облучения, так как проживает или работает рядом с ними. В этом случае также рассчитывается допустимая доза за год, при которой в течение 70 лет не будут происходить нарушения здоровья.

3. «В». К типу относится население области, края или страны, попавшее под излучение. Ограничение облучения происходит с помощью введения норм и контроля радиоактивности объектов в окружающей среде, вредных выбросов с АЭС, учитывая дозовые пределы для предыдущих категорий. Влияние излучений на население не подлежит регламенту, так как уровни облучения очень низки. В случаях радиационной аварии в регионах применяются все необходимые меры безопасности.

Меры безопасности

Защита от альфа-излучения не представляет собой проблемы. Радиационные лучи полностью задерживаются плотным листом бумаги и даже человеческой одеждой. Опасность возникает только при внутреннем облучении. Чтобы избежать его, используются средства индивидуальной защиты. К ним относятся спецодежда (комбинезоны, шлемы из молескина), пластиковые фартуки, нарукавники, резиновые перчатки, специальная обувь. Для защиты глаз применяются щитки из оргстекла, также используются дерматологические средства (пасты, мази, кремы), респираторы. На предприятиях прибегают к мерам коллективной защиты. Что касается защиты от газа радона, способного накапливаться в подвалах, ванных комнатах, то в этом случае необходимо часто проветривать помещения, а подвалы изнутри изолировать.

Характеристика альфа-излучения приводит нас к выводу о том, что данный вид имеет низкую пропускную способность и не требует серьезных мер защиты при внешнем облучении. Большой вред наносят эти радиоактивные частицы при проникновении внутрь организма. Элементы данного вида распространяются на минимальные расстояния. Альфа-, бета-, гамма-излучения отличаются друг от друга своими свойствами, проникающей способностью, влиянием на окружающую среду.

Корпускулярные излучения - ионизирующие излучения, состоящие из частиц с массой, отличной от нуля.


Альфа-излучение - поток положительно заряженных частиц (ядер атомов гелия - 24Не), который движется со скоростью около 20000 км/с. Альфа-лучи образуются при радиоактивном распаде ядер элементов с большими порядковыми номерами и при ядерных реакциях, превращениях. Энергия их колеблется в пределах 4-9 (2-11) МэВ. Пробег a-частиц в веществе зависит от их энергии и от природы вещества, в котором они движутся. В среднем в воздухе пробег составляет 2-10 см, в биологической ткани - несколько микрон. Так как a-частицы массивны и обладают относительно большой энергией, путь их в веществе прямолинейный , они вызывают сильно выраженный эффект ионизации. Удельная ионизация составляет примерно 40000 пар ионов на 1 см пробега в воздухе (на всей длине пробега может создаваться до 250 тысяч пар ионов). В биологической ткани на пути в 1-2 микрона также создается до 40000 пар ионов. Вся энергия передается клеткам организма, нанося ему огромный вред.


Альфа-частицы задерживаются листом бумаги и практически не могут проникать через внешний (наружный) слой кожи, они поглощаются роговым слоем кожи. Поэтому a-излучение не представляет опасности до той поры, пока радиоактивные вещества, излучающие a-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом - тогда они становятся чрезвычайно опасными .


Бета-излучение - поток b-частиц, состоящий из электронов (отрицательно заряженных частиц) и позитронов (положительно заряженных частиц), испускаемых атомными ядрами при их b-распаде. Масса β-частиц в абсолютном выражении равна 9,1х10-28 г. Бета-частицы несут один элементарный электрический заряд и распространяются в среде со скоростью от 100 тыс. км/с до 300 тыс. км/с (т.е. до скорости света) в зависимости от энергии излучения. Энергия b-частиц колеблется в значительных пределах. Это объясняется тем, что при каждом b-распаде радиоактивных ядер образующаяся энергия распределяется между дочерним ядром, b-частицами и нейтрино в разных соотношениях, причем энергия b -частиц может колебаться от нуля до какого-то максимального значения. Максимальная энергия лежит в пределах от 0,015-0,05 МэВ (мягкое излучение) до 3-13,5 МэВ (жесткое излучение).


Так как b-частицы имеют заряд, то под действием электрического и магнитного полей они отклоняются от прямолинейного направления. Обладая очень малой массой, b-частицы при столкновении с атомами и молекулами также легко отклоняются от своего первоначального направления (т.е. происходит сильное рассеяние их). Поэтому определить длину пути бета-частиц очень трудно - этот путь слишком извилистый. Пробег
b-частиц в связи с тем, что они обладают различным запасом энергии также подвергается колебаниям. Длина пробега в воздухе может достигать
25 см, а иногда и нескольких метров. В биологических тканях пробег частиц составляет до 1 см. На путь пробега влияет также плотность среды.


Ионизирующая способность бета-частиц значительно ниже, чем альфа-частиц. Степень ионизации зависит от скорости: меньше скорость - больше ионизация. На 1 см пути пробега в воздухе b-частица образует
50-100 пар ионов (1000-25 тыс. пар ионов на всем пути в воздухе). Бета-частицы больших энергий, пролетая мимо ядра слишком быстро, не успевают вызвать такой же сильный ионизирующий эффект, как медленные бета-частицы. При потере энергии захватывается либо положительным ионом с образованием нейтрального атома, либо атомом с образованием отрицательного иона.


Нейтронное излучение - излучение, состоящее из нейтронов, т.е. нейтральных частиц. Нейтроны образуются при ядерных реакциях (цепной реакции деления ядер тяжелых радиоактивных элементов, при реакциях синтеза более тяжелых элементов из ядер водорода). Нейтронное излучение является косвенно ионизируемым; образование ионов происходит не под действием самих нейтронов, а под действием вторичных тяжелых заряженных частиц и гамма-квантов, которым нейтроны передают свою энергию. Нейтронное излучение чрезвычайно опасно вследствие своей высокой проникающей способности (пробег в воздухе может достигать несколько тысяч метров). Кроме того нейтроны могут вызвать наведенную (в том числе и в живых организмах), превращая атомы стабильных элементов в их радиоактивные . От нейтронного облучения хорошо защищают водородсодержащие материалы (графит, парафин, вода и т.д.).


В зависимости от энергии различают следующие нейтроны:


1. Сверхбыстрые нейтроны с энергией в 10-50 МэВ. Они образуются при ядерных взрывах и работе ядерных реакторов.


2. Быстрые нейтроны, энергия их превышает 100 кэВ.


3. Промежуточные нейтроны - энергия их от 100 кэВ до 1 кэВ.


4. Медленные и тепловые нейтроны. Энергия медленных нейтронов не превышает 1 кэВ. Энергия тепловых нейтронов достигает 0,025 эВ.


Нейтронное излучение используют для нейтронной терапии в медицине, определения содержания отдельных элементов и их изотопов в биологических средах и т.д. В медицинской радиологии используются главным образом быстрые и тепловые нейтроны, в основном используют калифорний-252, распадающийся с выбросом нейтронов со средней энергией в 2,3 МэВ.


Электромагнитные излучения различаются по своему происхождению, энергии, а также по длине волны. К электромагнитным излучениям относятся рентгеновское излучение, гамма-излучение радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество сильно ускоренных заряженных частиц. Видимый свет и радиоволны - тоже электромагнитные излучения, но они не ионизируют вещество, ибо характеризуются большой длинной волны (меньшей жесткостью). Энергия электромагнитного поля излучается не непрерывно, а отдельными порциями - квантами (фотонами). Поэтому электромагнитные излучения - это поток квантов или фотонов.


Рентгеновские излучения. Рентгеновские лучи были открыты Вильгельмом Конрадом Рентгеном в 1895 г. Рентгеновское излучение - это квантовое электромагнитное излучение с длинной волны 0,001-10 нм. Излучение с длинной волны, превышающей 0,2 нм условно называют «мягким» рентгеновским излучением, а до 0,2 нм - «жестким». Длина волны - расстояние, на которое излучение распространяется за один период колебания. Рентгеновское излучение, как и всякое электромагнитное излучение, распространяется со скоростью света - 300000 км/с. Энергия рентгеновского излучения обычно не превышает 500 кэВ.


Различают тормозное и характеристическое рентгеновское излучение. Тормозное излучение возникает при торможении быстрых электронов в электростатическом поле ядра атомов (т.е. при взаимодействие электронов с ядрами атомов). При прохождении электрона больших энергий вблизи ядра наблюдается рассеяние (торможение) электрона. Скорость электрона снижается, и часть его энергии испускается в виде фотона тормозного рентгеновского излучения.


Характеристические рентгеновские излучения возникают, когда быстрые электроны проникают вглубь атома и выбивают из внутренних уровней (К, L и даже М). Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних уровней заполняют освободившиеся места во внутренних уровнях и при этом излучаются фотоны характеристического излучения с энергией, равной разности энергии атома в возбужденном и основном состоянии (не превышающем 250 кэВ). Т.е. характеристическое излучение возникает при перестроении электронных оболочек атомов. При различных переходах атомов из возбужденного состояния в невозбужденное, избыток энергии может также испускаться в виде видимого света, инфракрасных и ультрафиолетовых лучей. Так как рентгеновские лучи обладают малой длиной волн и меньше поглощаются в веществе, то они обладают большей проникающей способностью.


Гамма-излучение - это излучение ядерного происхождения. Оно испускается ядрами атомов при альфа и бета распаде природных искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета-частицей). Этот избыток энергии мгновенно высвечивается в виде гамма-квантов. Т.е. гамма-излучения - это поток электромагнитных волн (квантов), который излучается в процессе радиоактивного распада при изменении энергетического состояния ядер. Кроме того, гамма-кванты образуются при антигиляции позитрона и электрона. По свойствам гамма-излучение близко к рентгеновскому излучению, но обладает большей скоростью и энергией. Скорость распространения в вакууме равняется скорости света - 300000 км/с. Так как гамма-лучи не имеют заряда, то в электрическом и магнитном полях не отклоняются, распространяясь прямолинейно и равномерно во все стороны от источника. Энергия гамма-излучения колеблется от десятков тысяч до миллионов электрон-вольт (2-3 МэВ), редко достигает 5-6 МэВ (так средняя энергия гамма-лучей, образующихся при распаде кобальта-60 равна 1,25 МэВ). В состав потока гамма-излучений входят кванты различных энергий. При распаде 131