Подключение led power supply. Как подключить блок питания

  • не правильный монтаж и подключение с ошибками

Вот основные три правила и ошибки, на которые нужно обращать внимание в первую очередь.

1 правило

Светодиодная лента подключается параллельно, отрезками не более чем по 5 метров каждый.

Она даже продается катушками этого метража. А что если вам нужно подключить 10 или 15м? Казалось бы, подсоединил конец первого куска с началом второго и готово. Однако такое подключение запрещается. Почему так принято?

Потому что пять метров – это расчетная длина, которую могут выдержать токоведущие дорожки ленты. При большей длине, нагрузка будет превышать допустимую и лента обязательно выйдет из строя. Кроме того, будет наблюдаться неравномерность свечения. В начале ленты светодиоды будут светить ярко, а в конце гораздо тусклее.

Вот так будет выглядеть схема параллельного подключения светодиодных лент длиной превышающих допустимую:

При этом подключать ленту можно как с двух сторон, так и с одной. Подключение с двух сторон позволяет уменьшить нагрузку на токовые дорожки, а также помогает избежать неравномерности свечения в начале и конце ленты.

Особенно это важно на мощной ленте – свыше 9,6Вт/метр. Именно так советуют подключать профессионалы, которые занимаются установкой светодиодной продукцией долгие годы. Единственный жирный минус – приходится тащить дополнительные провода вдоль всего освещения.

2 правило

Светодиодная лента должна обязательно монтироваться на алюминиевый профиль, который выполняет роль теплоотвода.

Во время работы лента нагревается, и эта температура отрицательно влияет на сами светодиоды. Они попросту перегреваются и начинают терять яркость, постепенно деградируя и разрушаясь.

Таким образом лента, которая могла бы спокойно проработать 5-10 лет, без профиля перегорит у вас через год, а может даже и раньше. Поэтому использование алюминиевого профиля в светодиодной подсветке обязательно.

Единственная лента, где можно обойтись без него – это SMD 3528. Она маломощная, всего 4,8Вт на 1м и не столь требовательна к теплоотводу.

Особенно нуждаются в теплоотводе ленты залитые сверху силиконом. В них теплоотдача происходит только через подложку, снизу. А этого бывает иногда недостаточно. Если вы еще наклеите ее на какой-нибудь пластик или дерево, то здесь вообще никакого охлаждения не будет.

3 правило

Правильный выбор блока питания это гарантия долговременной и безопасной работы всей подсветки.

Блок питания должен быть мощнее чем светодиодная лента на 30%.

Только в этом случае он будет работать нормально. Если вы подберете его впритык, ровно по мощности всех светодиодов, то блок будет постоянно трудиться на своем пределе. Естественно такая работа скажется на продолжительности эксплуатации. Поэтому всегда давайте ему запас.

Подключение светодиодной ленты

Для монтажа освещения с помощью светодиодной ленты вам понадобится:






Монтаж питания 220В

Если у вас не выполнены эл.монтажные работы, то предварительно необходимо подвести напряжение 220В к месту подключения ленты. Для этого штробите стену, либо укладываете кабельный канал и протягиваете по нему трехжильный кабель ВВГнг-Ls 3*1,5. Ведете его непосредственно до той распредкоробки, где будет подключаться питание светодиодной ленты.

Можно использовать существующую распаечную коробку, где подключено основное освещение. Главное чтобы место позволяло свободно подключить дополнительные провода и клеммники.

Выключатель на светодиодную ленту желательно устанавливать именно на провода 220 Вольт, а не перед лентой на отходящие 12-24В. В этом случае блок не будет работать постоянно. Тем более, импульсным блокам работать без нагрузки противопоказано. К тому же так будет выше уровень безопасности.

Предварительно проверьте и не перепутайте фазу, ноль и землю. Чаще всего, ноль бывает синего цвета, заземляющая жила – желто-зеленого, а фазная - любых других расцветок.
Но доверять только цветовой маркировке нельзя! Более подробно как без ошибок отличить ноль и фазу можно ознакомиться в статье "Как определить фазу и ноль в электропроводке".

Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания. Для его размещения монтируете удобную полочку. Изготовить ее можно из кусков фанеры или гипсокартона. Рядом размещаете и диммер.

Подключение блока питания

Протянув кабель до блока, можно приступать непосредственно к подключению проводов.

  • фазный провод подсоединяете к разъему L
  • жилу синего цвета - нулевую, к клемме N
  • желто-зеленую - к клемме обозначенную как Pe или значком заземления


Подключение диммера

Теперь необходимо подключить диммер. Здесь применяйте гибкий монтажный провод ПуГВ 1,5мм2 разных цветов. Например черный (для минусовых контактов) и красный (для плюсовых).

  • отмеряете и отрезаете необходимого размера провода
  • зачищаете концы и опрессовываете их наконечниками НШВИ

В первую очередь подключаете концы со стороны блока питания. Минусовой провод (черного цвета) соединяете с клеммой имеющей маркировку –V . Плюсовой провод (красного цвета) с клеммой промаркированной как +V .

Оба провода должны подключаться к диммеру со стороны Power IN (входное питание). Провод красного цвета подключаете на диммере к плюсовой клемме DC+ , а другой провод к клемме минус DC-

Далее опять идут монтажные работы по прокладке провода. Протягиваете его в гофре от диммера, до места подключения к светодиодной ленте. Используйте тот же самый ПуГВ. При превышении общей длины светодиодной ленты и подсветки более 5 метров, ленты подключаются параллельно. Причем к каждой из них подводится отдельное питание.

Приступаете к подключению проводов к клеммам диммера. Они обычно имеют надпись и обозначаются как Output Led. Для надежного контакта зачищенные концы жил лучше обжать наконечниками.

Монтаж и пайка проводов на светодиодной ленте

Можно переходить к монтажу самой ленты. Для этого ее нужно отмерить и разрезать на нужные куски. Сделать это можно не в любом месте, а только там, где нанесен пунктир или нарисованы ножницы.

После резки, провода можно припаять к специальным контактам на ленте. Для этих же целей, а также для соединения отдельных кусков ленты друг с другом можно применить и коннекторы.

Ищите минусовой контакт и подсоединяете туда провода черного цвета. К контакту плюс идет соответственно другой провод – красный. Не разогревайте паяльник до максимума, иначе легко пережжете подложку. Рекомендуемое время пайки - до 10 сек.

Противоположные концы также зачищаются и на них устанавливаются наконечники НШВИ.

Еще раз запомните, что для лучшего охлаждения укладывать светодиодную ленту нужно только на профиль из алюминия. Монтируется он заранее.

После всех этих работ все жилы проводов выводятся в одно место и подключаются к соответствующим питающим проводам, с соблюдением фазировки (плюсовых и минусовых контактов).

Подключение лучше всего выполнять через клеммы Wago.

Сегодня очень популярна светодиодная подсветка, выполненная на основе светодиодной ленты и источника питания 12/24V. Многие клиенты, решившие сделать себе такую подсветку самостоятельно, впервые сталкиваются с установкой блоков питания.

И поэтому не знакомы с важными правилами, которые следовало бы соблюдать, если вы хотите, чтобы ваша светодиодная подсветка работала надежно и долго.

Правила установки

  1. При покупке помните, что не все блоки питания можно устанавливать в помещениях с повышенной влажностью (для влажных помещений подходят блоки со степенью пылевлагозащиты от IP54 и выше).
  2. Не устанавливайте источники питания в помещениях с высокой температурой, рядом с источниками тепла (температура корпуса не должна быть выше 50 0 C ).
  3. Для нормального охлаждения необходимо обеспечить свободное пространство вокруг блока не менее 200 мм во все стороны (иначе он может выйти из строя из-за перегрева). Поэтому устанавливать источники питания в закрытые ниши не рекомендуется.
  4. Не располагайте источники вплотную друг к другу.
  5. Не нагружайте источник питания более, чем на 80% от указанной мощности. При работе температура корпуса не должна превышать 50 0 С. В противном случае резко снижается максимально допустимая нагрузка.
  6. Не соединяйте параллельно выходы блоков питания
  7. Не размещайте источники питания там, где может скапливаться вода. Это вызывает разрушительные электрохимические процессы.
  8. Не используйте источник питания в сети с диммерами на 220V.

Правила подключения

Самое главное при подключении блока питания - не перепутать вход с выходом . В противном случае он сразу бесповоротно сгорит (в случае же попытки обменять такой блок по гарантии вам будет отказано, так как неправильное подключение легко диагностируется).

  1. Убедитесь, что у блока питания нет видимых повреждений, а выходное напряжение и мощность источника питания соответствуют подключаемой нагрузке
  2. Внимательно проверьте правильность подключения к сети 220В:
    Сетевое напряжение подается на входные провода (коричневый и синий) или клеммы, обозначенные как AC IN, INPUT, АС L, AC N .
    Выходные провода (красный и черный) обозначены, как DC OUT, OUTPUT, V+, V- . Убедитесь, что они не замкнуты между собой.
  3. Включите питание. Дайте поработать источнику питания 20 минут с подключенной нагрузкой. Температура корпуса не должна превышать 50 0 С.

Возможные неисправности источников питания и способы и устранения

Проявление неисправности Причина неисправности Метод устранения
Источник питания не включается Нет контакта в соединениях Проверьте все соединения
Перепутаны вход и выход источника питания В результате такого подключения источник напряжения сразу выходит из строя
Неправильная полярность подключения нагрузки Переподключите нагрузку, соблюдая полярность. Если проблема осталась, проверьте работоспособность нагрузки
Самопроизвольное периодическое включения и выключение
В нагрузке присутствует короткое замыкание Внимательно проверьте все цепи на короткое замыкание
Температура корпуса более +50С
Превышена максимально допустимая мощность нагрузки Уменьшите нагрузку или замените блок питания на более мощный
Недостаточное отвещение тепла Проверьте температуру среды, обеспечьте вентиляцию
Выходное напряжение источника не стабильно или не соответствует номинальному значению Электронная схема внутри источника неисправна Не пытайтесь самостоятельно установить причину. Передайте блок питания в сервисный центр

Похожие инструкции.

Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт .

Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.

В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.

В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.

Типы и требования к источникам питания для светодиодных лент и 12 В led ламп

Основное требование к источнику питания как для светодиодов, так и для светодиодных лент - качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.

По типу исполнения блоки питания для LED продукции различают:

    Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.

    Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.

По типу охлаждения:

    Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток - невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;

    Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.

Схемы блоков питания для светодиодных лент

Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.

Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.

Общая структура импульсного блока питания

Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).

Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:

    электронных трансформаторах;

    электронных балластах для люминесцентных ламп;

    зарядных устройствах для мобильного телефона;

    дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.

Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):

Его структура следующая:

В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.

Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…

Более дорогие и блоки питания

Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).

Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.

Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.

Самое интересное - это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер - это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.

Изменяя ширину импульсов при заданной частоте - вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.

На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.

На рисунке изображен биполярный ШИМ. Прямоугольные сигналы - это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей - действующее напряжение.

Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:

    Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;

    Более качественная стабилизация выходных параметров;

    Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока.

Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):

Здесь RM6203 - и контроллер и ключ в одном корпусе.

То же самое, но на другой микросхеме.

Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно просмотрев сигналы на выходе (ножка drain, gate).

Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.

Или вот схематически изображена замена подобных микросхем.

Мощные и дорогие блоки питания

Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.

Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны.

Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае - проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.

Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX.

Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):

Такие блоки питания отличаются высокой надёжностью и стабильностью работы.

Краткий алгоритм проверки:

1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка - плюс, а на 7 ножку - минус).

2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» - микросхему под замену.

3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена - проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет - на схеме это R39 и C35, их под замену, если после этого ничего не изменилось - микросхема вышла из строя.

4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту - это признак исправной микросхемы.

5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки - импульсы исчезнут. Если у вас получились другие результаты - проблема в МС.

Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC».

Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.

Вывод

Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах.

делятся на два класса. К первому классу относятся одноцветные светодиодные ленты. Эти ленты могут светить светом одного цвета в любом участке видимого спектра. Ко второму классу принадлежат так называемые полноцветные или RGB светодиодные ленты. Они идеально подходят для создания динамического освещения, так как могут излучать свет разного цвета. Это достигается изменением яркости свечения разных светодиодов. Учитывая то, что светодиодные светильники достаточно новы, у многих возникает вопрос: «Как самостоятельно подключить светодиодные ленты?» Начнем с того, что светодиодные ленты нельзя подключить к сети с напряжением 220В. Эти источники света работают от напряжения 12В или 24В, поэтому для их подключения нужно использовать специальный блок питания, понижающий напряжение с 220В до нужного уровня и обеспечивающий защиту светильника от перепадов напряжения. При выборе блока питания светодиодов нужно обратить особенное внимание на его мощность. Она должна соответствовать суммарной мощности подключенных к ней светильников плюс 20%. Эти 20% обеспечат необходимый запас мощности блока питания.

Подключение блока питания к сети напряжением 220 вольт.

Перед подключением сетевого адаптера необходимо подвести электрическую проводку как можно ближе к тому месту, где вы планируете монтировать светодиодные ленты и установить там розетку.

Многие блоки питания имеет в комплекте поставки сетевой шнур с вилкой, для подключения к розетке, на одном конце и штекером для подключения к сетевому адаптеру на другом. В этом случае все просто и перепутать ничего нельзя. Нужно только вставить штекер в специальное гнездо адаптера.

Однако нередко получатся так, что шнур в комплекте отсутствует и подключать блок питания нужно самостоятельно. В этом случае потребуется кабель, на одном конце которого установлена вилка, а на втором - очищенные от изоляции несколько миллиметров провода. В качестве сетевого шнура можно использовать кабель, с сечением жилы от 1,5мм, например, ВВГНГ 2х1,5 или ВВГ 2х2,5.

Зачищенные концы кабеля необходимо вставить в гнезда сетевого адаптера и закрутить винтом до достижения ощутимого сопротивления. Подключение производится к разъемам, обозначенным латинскими буквами L и N по следующему правилу: к разъему L (фаза) подключается коричневый провод, к разъему N (ноль) - синий провод. Схема подключения приведена на рисунке 1.

Подключение к адаптеру одной светодиодной ленты.

Светодиодные ленты работают от постоянного тока, поэтому их нужно подключать с учетом полярности. Иначе говоря, у таких светильников есть плюс и минус, и подключение проводится плюс к плюсу, минус к минусу. Перепутать контакты очень трудно, на каждой светодиодной ленте и на каждом блоке питания все провода и контакты промаркированы соответствующим образом. На ленте это маркировка «+» и «-», а на блоке питания - «+V» и «-V». Впрочем, даже если вы перепутаете контакты, ничего страшного не произойдет. Большинство современных светодиодных светильников имеют довольно надежную защиту и не перегорают при неправильном подключении. Это значит, что ошибку можно всегда исправить. Такое свойство можно использовать и для того, чтобы подобрать контакты методом проб и ошибок в случае, если маркировка клемм отсутствует, например, при подключении ленты через сетевой адаптер.

Однако отсутствие маркировки на светодиодной ленте или блоке питания должно стать причиной для сомнений в качестве данного устройства.

В целом подключение довольно легко осуществляется, достаточно вставить каждый провод ленты в соответствующее гнездо адаптера и закрутить имеющийся там винт отверткой.

Сечение проводов, которыми светодиодная лента подключается к адаптеру (независимо от типа и количества лент) должно быть не меньше 1,5мм. При меньших сечениях может произойти значительное падение напряжения, что снизит яркость светодиодов.

Подключение нескольких светодиодных лент.

При подключении нескольких светодиодных лент к одному адаптеру необходимо неукоснительно соблюдать два простых правила:

  1. Каждая подключаемая лента должна иметь длину не более 5 метров, так как в противном случае могут перегореть токопроводящие дорожки ленты. Однако при этом каждая лента может состоять из нескольких отрезков, например 3 метра и 2 метра, важно лишь, чтобы их суммарная длина была не более 5 метров..
  2. Каждая лента (5 метров) должна подключаться к адаптеру параллельно, а не последовательно.(см. рисунок 3),

При подключении нескольких светодиодных лент необходимо соблюдать полярность, так же, как и в случае подключения одной ленты. В целом схема подключения нескольких светодиодных лент показана на рисунке 4.

Если вы хотите использовать светодиодную ленту меньшей длины, то вам нужно разрезать ленту ножницами между имеющимися на ленте специальными площадками для пайки. Они расположены на довольно небольших расстояниях, так что вы можете получить ленту такой длины, какой захотите.

Для того, чтобы соединить несколько светодиодных лент в одну необходимо сложить их одна к другой местами для пайки и спаять их паяльником. Паяльник должен быть прогрет до температуры не более 260°С. Длительность пайки не должна превышать 10 секунд.

Подключение одной или нескольких полноцветных (RGB) светодиодных лент.

Что касается подключения RGB светодиодных лент, то для их нормальной работы нужно дополнительно использовать специальный трехканальный контроллер. Это устройство, предназначенное для управления яркостью свечения соответствующих светодиодов. Именно оно управляет тем, светодиод какого цвета включится, и с какой яркостью он будет светиться. В светодиодные контроллеры также заложены программы (до нескольких десятков), которые управляя питанием светодиодов, позволяют достичь самых разных визуальных эффектов, повышающих эстетическую ценность светодиодных лент.

На светодиодной ленте имеется 4 провода, а на контроллере 4 контакта. Кроме, положительного контакта и провода («+») имеются еще три провода/контакта, обычно маркированные цветом или буквами (R - красный, G - зеленый и B - синий). Контакты RGB служат для передачи сигнала от трехканального контроллера к светодиодам соответствующего цвета. Схема подключения одной или нескольких RGB светодиодных лент показана на рисунке 5.

Подключение нескольких RGB светодиодных лент осуществляется по тем же правилам, что и для подключения нескольких одноцветных светодиодных лент.

При подключении полноцветных светодиодных лент также нередко используется пульт дистанционного управления, позволяющий управлять светодиодной лентой с расстояния нескольких метров.

И наконец, нужно помнить, что контроллер, как любое электронное устройство, также потребляет электроэнергию. Это нужно учесть при выборе блока питания, прибавив к расчетной мощности (с учетом запаса) еще 5Вт.

Led7 - Future Lighting

Блок питания необходим для подачи электричества к материнской плате и некоторым её компонентам. Всего на нём находится 5 кабелей для подключения, каждый из которых имеет разное количество контактов. Внешне они отличаются друг от друга, поэтому их необходимо подключать к строго определённым разъёмам.

Стандартный блок питания имеет всего 5 проводов с разными характеристиками. Подробнее о каждом:

  • 20/24-х контактный провод необходим для питания самой материнской платы. Его можно отличить по характерному размеру – это самый крупный модуль из всех, которые идут от БП;
  • 4/8-ми контактный модуль используется для подключения к отдельному питанию кулера с процессором;
  • 6/8-ми контактный модуль для питания видеокарты;
  • Провод для питания жёстких дисков SATA самый тонкий из всех, как правило, имеет отличную от остальных кабелей окраску;
  • Дополнительный провод для подпитки стандарта «Molex». Необходим для подключения старых жёстких дисков;
  • Разъём для питания дисковода. Имеются модели блоков питания, где такого кабеля нет.

Для нормальной работы компьютера необходимо подключить как минимум первые три кабеля.

Если вы ещё не приобрели блок питания, то вам необходимо убедиться в том, что он максимально соответствует вашей системе. Для этого сравните мощности блока питания и потребление энергии вашим компьютером (в первую очередь, процессором и видеокартой). Ещё придётся подыскать блок питания под форм-фактор вашей материнки.

Этап 1: монтаж блока питания

Изначально вам необходимо просто закрепить блок питания на внутренней поверхности корпуса компьютера. Для этого используются специальные шурупы. Пошаговая инструкция выглядит так:


Этап 2: подключение

Когда блок питания закреплён можно приступать к подсоединению проводов к основным комплектующим компьютера. Очередность подключения выглядит так:


Подключить блок питания не слишком сложно, но этот процесс требует аккуратности и терпения. Не забывайте о том, что блок питания необходимо выбирать заранее, подстраиваясь под требования материнской платы, чтобы обеспечить максимальную производительность.