Решение уравнений средствами Excel. Решение уравнений в excel Функция поиск решения в excel пример

Micrisoft Office Excel 2007 – специальная программа Windows, позволяющая составлять различные таблицы с вводимыми данными. Более того, данная программа позволяет решать уравнения.

Открываем Excel 2007. Для наиболее простого решения уравнения воспользуйтесь функцией «поиск решений». Правда, во многих стандартных пакетах Office данная надстройка не установлена. Чтобы установить, откройте параметры Office Excel, которые находятся в правом нижнем углу всплывающего нижнего диалогового окна. В открывшемся меню кликаем в следующей последовательности: «надстройки» - «Поиск решения» - «перейти».

После перехода установите галочку рядом с пунктом «поиск решения» и нажмите OK.

Затем Excel выполнит настройку программы.

Затем, чтобы решить уравнение, введите его в поле листа. Пусть ваше уравнение с двумя переменными: F(x1,x2)=3×1+2×2 – max, в случае определенных ограничений:

  • X1 - x2 ≥ -2
  • 3×1 - 2×2 ≤ 6
  • 2×1+3×2 ≥ 2
  • X2 ≤ 3
  • X1 ≥ 0
  • X2 ≤ 0

Введите в колонку А таблицы Excel переменные х1 и x2. Затем выделите синим цветом поле, где расположены полученные значения переменных. Затем в колонке А введите саму функцию F(x1, x2)=. А справа от нее выделите красным цветом ту ячейку, в которой будет находиться значение данной функции.

Затем в красное поле введите само уравнение 3×1+2×2. Учтите, что х1 – ячейка В1, а х2 – ячейка В2.

Теперь введите в поле все ограничения.

Затем перейдите в раздел «поиск решений» (папка данные). Найдите поле «установить целевую ячейку», куда нужно поставить красную ячейку. Напротив «=» пишем максимальное значение.
В поле «изменяя ячейки» добавьте синие ячейки – х1, х2.

Если вы ввели все ограничения, проверьте их правильность, после чего нажмите кнопку «выполнить». В случае если все данные введены верно, то программа должна рассчитать неизвестные. В нашем случае х1=4, ч2=3 и F(x1,x2)=18. Уравнение решено.

Решение нелинейных уравнений и систем»

Цель работы : Изучение возможностей пакета Ms Excel 2007 при решении нелинейных уравнений и систем. Приобретение навыков решения нелинейных уравнений и систем средствами пакета.

Задание1. Найти корни полинома x 3 - 0,01x 2 - 0,7044x + 0,139104 = 0.

Для начала решим уравнение графически. Известно, что графическим решением уравнения f(x)=0 является точка пересечения графика функции f(x) с осью абсцисс, т.е. такое значение x, при котором функция обращается в ноль.

Проведем табулирование нашего полинома на интервале от -1 до 1 с шагом 0,2. Результаты вычислений приведены на ри., где в ячейку В2 была введена формула: = A2^3 - 0,01*A2^2 - 0,7044*A2 + 0,139104. На графике видно, что функция три раза пересекает ось Оx, а так как полином третьей степени имеется не более трех вещественных корней, то графическое решение поставленной задачи найдено. Иначе говоря, была проведена локализация корней, т.е. определены интервалы, на которых находятся корни данного полинома: [-1,-0.8], и .

Теперь можно найти корни полинома методом последовательных приближений с помощью команды Данные→Работа с данными→Анализ «Что-Если» →Подбор параметра .

После ввода начальных приближений и значений функции можно обратиться к команде Данные→Работа с данными→Анализ «Что-Если» →Подбор параметра и заполнить диалоговое окно следующим образом.

В поле Установить в ячейке дается ссылка на ячейку, в которую введена формула, вычисляющая значение левой части уравнения (уравнение должно быть записано так, чтобы его правая часть не содержала переменную). В поле Значение вводим правую часть уравнения, а в поле Изменяя значения ячейки дается ссылка на ячейку, отведенную под переменную. Заметим, что вводить ссылки на ячейки в поля диалогового окна Подбор параметров удобнее не с клавиатуры, а щелчком на соответствующей ячейке.

После нажатия кнопки ОК появится диалоговое окно Результат подбора параметра с сообщением об успешном завершении поиска решения, приближенное значение корня будет помещено в ячейку А14.

Два оставшихся корня находим аналогично. Результаты вычислений будут помещены в ячейки А15 и А16.

Задание 2. Решить уравнение e x - (2x - 1) 2 = 0.

Проведем локализацию корней нелинейного уравнения.

Для этого представим его в виде f(x) = g(x) , т.е. e x = (2x - 1) 2 или f(x) = e x , g(x) = (2x - 1) 2 , и решим графически.

Графическим решением уравнения f(x) = g(x) будет точка пересечения линий f(x) и g(x).

Построим графики f(x) и g(x). Для этого в диапазон А3:А18 введем значения аргумента. В ячейку В3 введем формулу для вычисления значений функции f(x): = EXP(A3), а в С3 для вычисления g(x): = (2*A3-1)^2.

Результаты вычислений и построение графиков f(x) и g(x):

На графике видно, что линии f(x) и g(x) пересекаются дважды, т.е. данное уравнение имеет два решения. Одно из них тривиальное и может быть вычислено точно:

Для второго можно определить интервал изоляции корня: 1,5 < x < 2.

Теперь можно найти корень уравнения на отрезке методом последовательных приближений.

Введём начальное приближение в ячейку Н17 = 1,5, и само уравнение, со ссылкой на начальное приближение, в ячейку I17 = EXP(H17) - (2*H17-1)^2.

и заполним диалоговое окно Подбор параметра .

Результат поиска решения будет выведен в ячейку Н17.

Задание 3 . Решить систему уравнений:

Прежде чем воспользоваться описанными выше методами решения систем уравнений, найдем графическое решение этой системы. Отметим, что оба уравнения системы заданы неявно и для построения графиков, функций соответствующих этим уравнениям, необходимо разрешить заданные уравнения относительно переменной y.

Для первого уравнения системы имеем:

Выясним ОДЗ полученной функции:

Второе уравнение данной системы описывает окружность.

Фрагмент рабочего листа MS Excel с формулами, которые необходимо ввести в ячейки для построения линий, описанных уравнениями системы. Точки пересечения линий изображенных являются графическим решением системы нелинейных уравнений.

Не трудно заметить, что заданная система имеет два решения. Поэтому процедуру поиска решений системы необходимо выполнить дважды, предварительно определив интервал изоляции корней по осям Оx и Oy . В нашем случае первый корень лежит в интервалах (-0.5;0) x и (0.5;1) y , а второй - (0;0.5) x и (-0.5;-1) y . Далее поступим следующим образом. Введем начальные значения переменных x и y, формулы отображающие уравнения системы и функцию цели.

Теперь дважды воспользуемся командой Данные→Анализ→Поиск решений, заполняя появляющиеся диалоговые окна.

Сравнив полученное решение системы с графическим, убеждаемся, что система решена верно.

Задания для самостоятельного решения

Задание 1 . Найти корни полинома

Задание 2 . Найдите решение нелинейного уравнения.


Задание 3 . Найдите решение системы нелинейных уравнений.


Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

14x1 +2x2 +8x4 =218
7x1 -3x2 +5x3 +12x4 =213
5x1 +x2 -2x3 +4x4 =83
6x1 +2x2 +x3 -3x4 =21

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1 . Обозначаем полученную таблицу, как вектор A .
  2. Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B .
  3. Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР . Он имеет довольно простой синтаксис:

    МОБР(массив)

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию» , расположенную около строки формул.

  4. Выполняется запуск Мастера функций . Переходим в категорию «Математические» . В представившемся списке ищем наименование «МОБР» . После того, как оно отыскано, выделяем его и жмем на кнопку «OK» .
  5. МОБР . Оно по числу аргументов имеет всего одно поле – «Массив» . Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK» , но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter . Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter , а произвести набор сочетания клавиш Ctrl+Shift+Enter . Выполняем эту операцию.
  6. Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
  7. Теперь нам нужно будет умножить обратную матрицу на матрицу B , которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ . Данный оператор имеет следующий синтаксис:

    МУМНОЖ(Массив1;Массив2)

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций , нажав значок «Вставить функцию» .

  8. В категории «Математические» , запустившегося Мастера функций , выделяем наименование «МУМНОЖ» и жмем на кнопку «OK» .
  9. Активируется окно аргументов функции МУМНОЖ . В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2» , только на этот раз выделяем значения колонки B . После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter , а набираем комбинацию клавиш Ctrl+Shift+Enter .
  10. После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1 , X2 , X3 и X4 . Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  11. Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение


    Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x .

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1 :

    14x1 +2x2 +8x4 =218
    7x1 -3x2 +5x3 +12x4 =213
    5x1 +x2 -2x3 +4x4 =83
    6x1 +2x2 +x3 -3x4 =21

    1. Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно» .
    2. Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A , только у этих копий поочередно один столбец заменен на таблицу B . У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
    3. Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД . Синтаксис данного оператора следующий:

      МОПРЕД(массив)

      Таким образом, как и у функции МОБР , единственным аргументом выступает ссылка на обрабатываемую таблицу.

      Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию» .

    4. Активируется окно Мастера функций . Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД» . После этого жмем на кнопку «OK» .
    5. Запускается окно аргументов функции МОПРЕД . Как видим, оно имеет только одно поле – «Массив» . В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK» . Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter .
    6. Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740 , то есть, не является равным нулю, что нам подходит.
    7. Аналогичным образом производим подсчет определителей для остальных трех таблиц.
    8. На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
    9. Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148 , которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5 , 14 , 8 и 15 . Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1 , что подтверждает правильность решения системы уравнений.

    Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

    14x1 +2x2 +8x3 =110
    7x1 -3x2 +5x3 =32
    5x1 +x2 -2x3 =17

    1. Опять последовательно записываем коэффициенты в таблицу A , а свободные члены, расположенные после знака «равно» — в таблицу B . Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
    2. Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

      B8:E8-$B$7:$E$7*(B8/$B$7)

      Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

      После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter . К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    3. После этого копируем полученную строку и вставляем её в строчку ниже.
    4. Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать» , которая расположена на ленте во вкладке «Главная» .
    5. Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка» . В запустившемся дополнительном списке выбираем позицию «Значения» .
    6. В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

      B13:E13-$B$12:$E$12*(C13/$C$12)

      После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter .

    7. Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

      Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter .

    8. Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

      =(B16:E16-B21:E21*D16)/C16

      Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    9. Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

      =(B15:E15-B20:E20*C15-B21:E21*D15)/B15

      Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter .

    10. Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4 , 7 и 5 ) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1 , X2 и X3 в выражения.

    Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

Большинство задач, решаемых с помощью электронной таблицы, предполагают нахождение искомого результата по известным исходным данным. Но в Excel есть инструменты, позволяющие решить и обратную задачу: подобрать исходные данные для получения желаемого результата.

Одним из таких инструментов является Поиск решения , который особенно удобен для решения так называемых "задач оптимизации".

Если Вы раньше не использовали Поиск решения , то Вам потребуется установить соответствующую надстройку.

Сделать это можно так:

для версий старше Excel 2007 через команду меню Сервис --> Надстройки;

начиная с Excel 2007 через диалоговое окно Параметры Excel

Начиная с версии Excel 2007 кнопка для запуска Поиска решения появится на вкладке Данные .

В версиях до Excel 2007 аналогичная команда появится в меню Сервис

Разберём порядок работы Поиска решения на простом примере.

Пример 1. Распределение премии

Предположим, что Вы начальник производственного отдела и Вам предстоит по-честному распределить премию в сумме 100 000 руб. между сотрудниками отдела пропорционально их должностным окладам. Другими словами Вам требуется подобрать коэффициент пропорциональности для вычисления размера премии по окладу.

Первым делом создаём таблицу с исходными данными и формулами, с помощью которых должен быть получен результат. В нашем случае результат - это суммарная величина премии. Очень важно, чтобы целевая ячейка (С8) посредством формул была связана с искомой изменяемой ячейкой (Е2). В примере они связаны через промежуточные формулы, вычисляющие размер премии для каждого сотрудника (С2:С7).


Теперь запускаем Поиск решения и в открывшемся диалоговом окне устанавливаем необходимые параметры. Внешний вид диалоговых окон в разных версиях несколько различается:

Начиная с Excel 2010

До Excel 2010

После нажатия кнопки Найти решение (Выполнить) Вы уже можете видеть в таблице полученный результат. При этом на экране появляется диалоговое окно Результаты поиска решения.

Начиная с Excel 2010


До Excel 2010

Если результат, который Вы видите в таблице Вас устраивает, то в диалоговом окне Результаты поиска решения нажимаете ОК и фиксируете результат в таблице. Если же результат Вас не устроил, то нажимаете Отмена и возвращаетесь к предыдущему состоянию таблицы.

Решение данной задачи выглядит так


Важно: при любых изменениях исходных данных для получения нового результата Поиск решения придется запускать снова.

Разберём еще одну задачу оптимизации (получение максимальной прибыли)

Пример 2. Мебельное производство (максимизация прибыли)

Фирма производит две модели А и В сборных книжных полок.

Их производство ограничено наличием сырья (высококачественных досок) и временем машинной обработки.

Для каждого изделия модели А требуется 3 м² досок, а для изделия модели В - 4 м². Фирма может получить от своих поставщиков до 1700 м² досок в неделю.

Для каждого изделия модели А требуется 12 мин машинного времени , а для изделия модели В - 30 мин. в неделю можно использовать 160 ч машинного времени.

Сколько изделий каждой модели следует выпускать фирме в неделю для достижения максимальной прибыли, если каждое изделие модели А приносит 60 руб. прибыли, а каждое изделие модели В - 120 руб. прибыли?

Порядок действий нам уже известен.

Сначала создаем таблицы с исходными данными и формулами. Расположение ячеек на листе может быть абсолютно произвольным, таким как удобно автору. Например, как на рисунке


Запускаем Поиск решения и в диалоговом окне устанавливаем необходимые параметры

  1. Целевая ячейка B12 содержит формулу для расчёта прибыли
  2. Параметр оптимизации - максимум
  3. Изменяемые ячейки B9:C9
  4. Ограничения: найденные значения должны быть целыми, неотрицательными; общее количество машинного времени не должно превышать 160 ч (ссылка на ячейку D16); общее количество сырья не должно превышать 1700 м² (ссылка на ячейку D15). Здесь вместо ссылок на ячейки D15 и D16 можно было указать числа, но при использовании ссылок какие-либо изменения ограничений можно производить прямо в таблице
  5. Нажимаем кнопку Найти решение (Выполнить) и после подтверждения получаем результат


Но даже если Вы правильно создали формулы и задали ограничения, результат может оказаться неожиданным. Например, при решении данной задачи Вы можете увидеть такой результат:


И это несмотря на то, что было задано ограничение целое . В таких случаях можно попробовать настроить параметры Поиска решения . Для этого в окне Поиск решения нажимаем кнопку Параметры и попадаем в одноимённое диалоговое окно

Первый из выделенных параметров отвечает за точность вычислений. Уменьшая его, можно добиться более точного результата, в нашем случае - целых значений. Второй из выделенных параметров (доступен, начиная с версии Excel 2010) даёт ответ на вопрос: как вообще могли получиться дробные результаты при ограничении целое ? Оказывается Поиск решения это ограничение просто проигнорировал в соответствии с установленным флажком.

Пример 3. Транспортная задача (минимизация затрат)

На заказ строительной компании песок перевозиться от трех поставщиков (карьеров) пяти потребителям (строительным площадкам). Стоимость на доставку включается в себестоимость объекта, поэтому строительная компания заинтересована обеспечить потребности своих стройплощадок в песке самым дешевым способом.

Дано: запасы песка на карьерах; потребности в песке стройплощадок; затраты на транспортировку между каждой парой «поставщик-потребитель».

Нужно найти схему оптимальных перевозок для удовлетворения нужд (откуда и куда), при которой общие затраты на транспортировку были бы минимальными.

Пример расположения ячеек с исходными данными и ограничениями, искомых ячеек и целевой ячейки показан на рисунке


В серых ячейках формулы суммы по строкам и столбцам, а в целевой ячейке формула для подсчёта общих затрат на транспортировку .

Запускаем Поиск решения и устанавливаем необходимые параметры (см. рисунок)

Нажимаем Найти решение (Выполнить) и получаем результат, изображенный ниже

В заключение предлагаю попробовать свои силы в применении Поиска решения и решить с его помощью старинную задачу:

Крестьянин на базаре за 100 рублей купил 100 голов скота. Бык стоит 10 рублей, корова 5 рублей, телёнок 50 копеек. Сколько быков, коров и телят купил крестьянин?

В этой статье мы расскажем, как использовать формулы для решения систем линейных уравнений.

Вот пример системы линейных уравнений:
3x + 4y = 8
4x + 8y = 1

Решение состоит в нахождении таких значений х и у , которые удовлетворяют обоим уравнениям. Эта система уравнений имеет одно решение:
x = 7,5
y = -3,625

Количество переменных в системе уравнений должно быть равно количеству уравнений. Предыдущий пример использует два уравнения с двумя переменными. Три уравнения требуются для того, чтобы найти значения трех переменных (х ,у и z ). Общие действия по решению систем уравнений следующие (рис. 128.1).

  1. Выразите уравнения в стандартной форме. Если это необходимо, используйте основы алгебры и перепишите уравнение так, чтобы все переменные отображались по левую сторону от знака равенства. Следующие два уравнения идентичны, но второе приведено в стандартном виде:
    3x - 8 = -4y
    3x + 4y = 8 .
  2. Разместите коэффициенты в диапазоне ячеек размером n x n , где n представляет собой количество уравнений. На рис. 128.1 коэффициенты находятся в диапазоне I2:J3 .
  3. Разместите константы (числа с правой стороны от знака равенства) в вертикальном диапазоне ячеек. На рис. 128.1 константы находятся в диапазоне L2:L3 .
  4. Используйте массив формул для расчета обратной матрицы коэффициентов. На рис. 128.1 следующая формула массива введена в диапазон I6:J7 (не забудьте нажать Ctrl+Shift+Enter , чтобы ввести формулу массива): =МОБР(I2:J3) .
  5. Используйте формулу массива для умножения обратной матрицы коэффициентов на матрицу констант. На рис. 128.1 следующая формула массива введена в диапазон J10:JJ11 , который содержит решение (x = 7,5 и у = -3,625): =МУМНОЖ(I6:J7;L2:L3) . На рис. 128.2 показан лист, настроенный для решения системы из трех уравнений.