Конформные отображения. Конформные отображения с помощью элементарных функций Конформное отображение 1 z

Электродные системы со сложными двумерными электростатическими полями могут быть рассчитаны методом конформных отображений. Основная идея этого метода состоит в замене сложных полей – простыми полями, для которых решения известны. К таким простым полям относятся поля плоского или цилиндрического конденсатора вдали от их краев. Метод конформных отображений является практическим применением теории функции комплексного переменного. Конформное отображение – это непрерывное отображение, сохраняющее форму бесконечно малых (б.м.) фигур. Для конформного отображения выполняется свойство постоянство углов и постоянство растяжений. Название происходит от позднелатинского – conformis – подобный, непрерывное отображение, сохраняющее форму бесконечно малых фигур: например, б.м. круг остается б.м. кругом; углы между линиями в точке их пересечения друг с другом не изменяются. Область применения метода конформных отображений для расчета электрических полей – двумерные электростатические поля.

Конформное преобразование отображает каждую точку z =x +j×y реального расчетного поля, описывающегося комплексной плоскостью, в точку w =u +j×v другой комплексной плоскости, с более простой конфигурацией поля. Основная сложность метода – нахождение вида функции для данной реальной электродной системы. На практике, при попытках найти функцию конформного отображения, используют либо специальные каталоги конформных отображений , либо ищут ее посредством последовательных проб.

Предположим, что мы знаем вид некоторого преобразования z =f(w) или обратного преобразования w =f(z) , которое устанавливает взаимно однозначное соответствие между двумя комплексными плоскостями со сложной (z ) и простой (w ) конфигурацией поля. Коэффициентом преобразования называется отношение dw/dz .

здесь использованы соотношения:

, . (2.94)

Аналогично можно записать:

. (2.95)

Два комплексных числа равны, если у них равны порознь действительные и мнимые части. Сравнивая значения коэффициента преобразования, приведенные в выражениях (2.93) и (2.95) можно записать:

Выражения (2.96) известны под названием условий Коши-Римана. Используя различные формы представления комплексных чисел, коэффициент преобразования можно записать в виде:

где - коэффициент изменения длины отрезков при преобразовании, а tg(j) = b/a (j - угол поворота отрезков при преобразовании). Из соотношений Коши-Римана, получим:

(2.99)

Из соотношений (2.97) – (2.98) следует, что коэффициент конформного преобразования М является относительной напряженностью электрического поля, а каждая из функций u и v может быть выбрана в качестве потенциала на новой комплексной плоскости w =f(u,v) . Этот вывод может быть проверен другим способом. Если функции u и v могут быть выбраны в качестве потенциала, то каждая из них должна удовлетворять уравнению Лапласа: Du =0 и Dv =0. Это можно проверить непосредственным повторным дифференцированием условий Коши-Римана. Продифференцируем первое условие по х , а второе по у ; сложим результат; перенесем в левую часть записи все значащие производные и оставим справа нуль:

; ; . (2.100)

Из полученного выражения следует, что функция u удовлетворяет уравнению Лапласа (1.25), (1.30) и может быть принята за потенциал. Продифференцируем 1-е условие по у , а 2-е - по х :

; ; , (2.101)

т.е. и функция v также удовлетворяет уравнению Лапласа и также может быть принята за потенциал. Поскольку силовые и эквипотенциальные линии на плоскости z =f(x,y) взаимно перпендикулярны, а конформное преобразование оставляет неизменными углы между линиями в точке их пересечения, то из (2.97) ¸ (2.101) следует, что если функция u принята, например, за потенциал, то тогда линия с v =const – является силовой линией. Если же v – потенциал, то u =const – силовая линия. Какая из функций u или v является потенциалом, а какая силовой линией, следует определять из анализа конформного преобразования поля на исходной плоскости z =f(x,y) в поле на плоскости w =f(u,v). Любая функция z=f(w) (или w=f(z)) дает нам решение какой-либо задачи электростатики. Можно придумать произвольную функцию, найти для неё решения, а затем к найденным решениям подобрать соответствующую электродную систему. Таким методом (задом наперед) было найдено множество решений электростатических задач.

При нахождении напряженности электрического поля методом конформных отображений следует учитывать следующее важное обстоятельство. Картина электрического поля полностью определяется геометрическими параметрами электродной системы независимо от пространственного масштаба и приложенного напряжения. Поэтому поле может быть описано напряженностью, отнесенной к единице напряжения или длины. Выражения (2.97)-(2.98) представляют собой именно такую относительную напряженность. Для получения реальной напряженности необходимо учесть действительно приложенное напряжение и фактическое расстояние между электродами. Это делается умножением выражений (2.97)-(2.98) на коэффициент масштаба К м . Пусть расстояние между электродами в плоскости w равно u 2 -u 1 (v 2 -v 1), если за эквипотенциальные линии приняты функции u или v , соответственно. Тогда коэффициент масштаба принимает вид:

К м = U /(u 2 -u 1) или К м = U /(v 2 -v 1). (2.102)

Цилиндрический конденсатор. Хотя расчет электростатического поля цилиндрического конденсатора приведен в §2.5, рассмотрим его в качестве примера применения метода конформных отображений. Поле цилиндрического конденсатора (поле двух концентрических окружностей) на плоскости ху может быть отображено в однородное поле (поле плоского конденсатора) следующим преобразованием:

z = e w ; x + j×y = e u+jv = e u (Cosv +j ×Sinv ).

Произведем разделение действительных и мнимых частей:

Прямая линия на реальной плоскости z , проходящая через начало координат с углом наклона к оси х равным v =const переходит в прямую линию на плоскости w , параллельную оси абсцисс.

При u = const на плоскости w получается система прямых линий, параллельных оси ординат. На плоскости z они соответствуют системе концентрических окружностей. Очевидно, что линии с u = const следует принять за потенциальные линии, а v – за силовые линии поля. Расчет напряженности будем проводить по формуле (2.97):

Длина преобразуемого малого отрезка при переносе с плоскости z на плоскость w изменяется в 1/r раз, где r – расстояние до центра окружностей. Чем дальше от центра, тем меньше коэффициент изменения длин отрезков. Переносимый отрезок поворачивается на угол j = arctg(-y/x ). Угол между лучом, идущим из начала координат в середину преобразуемого отрезка, и осью х становится равным нулю. Все радиусы на z - плоскости превращаются на w - плоскости в линии параллельные оси u . Масштабный коэффициент

Напряженность

(2.103)

Полученная формула (2.103) совпадает, как и следовало ожидать в силу теоремы о единственности, с выражением (2.18), полученным с помощью теоремы Остроградского-Гаусса.

Поле внутри прямого угла, образованного двумя плоскостями

В качестве другого примера применения метода конформных отображений рассмотрим поле, образованное двумя бесконечными проводящими взаимно перпендикулярными плоскостями. Очевидно, что такая электродная система имеет трансляционную симметрию с бесконечно малым шагом трансляции вдоль плоскостей и плоскость симметрии, проходящую под углом 45° к каждой из плоскостей. Такое поле сводится к двумерному полю, а для определения его параметров достаточно рассчитать характеристики поля между одной из плоскостей и плоскостью симметрии. Для двумерных полей может быть применен метод конформного отображения. Поле в z – плоскости, перпендикулярной линии пересечения заряженных плоскостей, показано на рис.2.20а. За оси х и у приняты линии пересечения заряженных плоскостей с z – плоскостью. Поле внутри прямого угла, образованного двумя плоскостями, преобразуется в однородное поле преобразованием w = z 2 . Покажем это:

w = u +jv = z 2 = (x +jy ) 2 = x 2 + j 2xy y 2 ; u = x 2 – y 2 ; v = + j 2xy .

При u = const линии, параллельные оси v на плоскости w , преобразуются в семейство равнобочных гипербол x 2 – y 2 = а 2 на плоскости z . Ось 0х является действительной (фокальной) осью гипербол, а ось у её мнимой осью. Прямая линия, проходящая через начало координат под углом 45° к оси х (u = 0; y = x ), представляет собой линию пересечения z – плоскости с плоскостью симметрии и является асимптотой гипербол. Угол пересечения гипербол с осью х равен 90°, т.е. линии функции u =х 2 -у 2 перпендикулярны эквипотенци альной линии х (поверхности заряженной плоскости х ).

Функции v = 2xy при различных значениях v описывают другое семейство равнобочных гипербол, у которых оси х и у являются асимптотами, а линия у = х является фокальной осью. На рис.2.20а представлены гиперболы с v = 4, 16, 36. При v = 0 гипербола вырождается в оси координат х и у , которые совпадают с заряженными плоскостями. Поскольку поверхность заряженных плоскостей является поверхностью одинакового потенциала, очевидно, что именно функция v должна быть принята за потенциальную функцию на плоскости w . В этом случае функция u представляет собой силовую функцию. Поле двух бесконечных взаимно перпендикулярных плоскостей (оси х и у на z – плоскости) превращается в однородное поле бесконечной заряженной плоскости (ось v на w – плоскости).

Конформное преобразование, сохраняя форму бесконечно малых фигур, может существенно изменить форму конечных фигур. В качестве примера такого изменения приведено преобразование квадрата abcd c координатами а (0,8;0,8), b (0,8;4), c (4;4), d (4;0,8) на z - плоскости в криволинейный четырехугольник a¢b¢c¢d¢ с координатами а¢ (0;1,28), (-15,36;6,4), (0;32), (15,36;6,4) на w - плоскости.

Определим относительную напряженность электростатического поля заряженных плоскостей рис.2.20а. Из двух формул (2.97) и (2.98) для определения напряженности будем использовать (2.98), поскольку именно функция v = 2xy описывает систему эквипотенциальных поверхностей (линий). Линейный коэффициент преобразования:

, (2.104)

Длина преобразуемого малого отрезка при переносе с z - плоскости на w - плоскость увеличивается в 2r раз, где r =х 2 +у 2 – расстояние на z - плоскости от начала координат до центра отрезка. Переносимый отрезок поворачивается на угол j = arctg(y/x ). Происходит удвоение угла между лучом, идущим из начала координат в середину отрезка, и осью х . Масштабный коэффициент К м = U /(v 2 -v 1) = U /(2x 2 y 2 -2x 1 y 1). Напряженность поля определится умножением относительной напряженности на масштабный коэффициент: Е =E¢×K м . Пусть масштабный коэффициент равен К м =100 в/м. Определим напряженность поля в двух точках на заряженной плоскости: более близкой к углу пересечения плоскостей n 1(1;0) и отдаленной от него n 2 (5;0).

В/м, ×в/м.

Чем ближе к углу, тем меньше напряженность поля. Это результат можно было ожидать из картины поля рис.2.20: расстояние между эквипотенциальными линиями уменьшается при удалении от угла. Любое углубление (вмятина, впадина, каверна, трещина и т.п.) на поверхности электрода может быть приблизительно описано рассмотренной задачей. Тогда, учитывая результаты предыдущего параграфа, можно заключить: вблизи острия или выступа напряженность электрического поля повышается, а вблизи впадины или отверстия она слабеет. Аналогичная рис.2.20а картина поведения силовых и эквипотенциальных линий наблюдается вблизи точки ветвления поля от двух одноименных зарядов (§2.11).

Поле на краю плоского конденсатора (профиль Роговского)

Поместим начало координат на z - плоскости так, чтобы ось х была параллельна плоскостям обкладок конденсатора и находилась от них на одинаковом расстоянии a . Ось у перпендикулярна обкладкам и проходит через их края. Функцию отображения поля на краю плоского конденсатора в однородное поле получил Ю. К. Максвелл в 1881 г. в виде:

. (2.105)

После разделения переменных получаем:

При v I = 0, y = 0, . При v II = p, y = a, .

Очевидно, что за потенциальную функцию следует выбрать функцию v .

,

Учитывая, что К м =U/(v II -v I) = U /p

(2.106)

При u < -5 в области от v I =0 до v II =p получается практически однородное поле с напряженностью U/a . При u ®0 напряженность на электроде (v =v II = p)сильно возрастает и стремиться к бесконечности при u =0. Наибольшая напряженность в реальных системах не обращается в нуль:

. (2.107)

При конечной толщине обкладки конденсатора v ¹p и напряженность остается конечной. Величину v следует подбирать так, чтобы эквипотенциальная поверхность совпала с реальной поверхностью обкладки конденсатора. Пусть v = 174° = 29p/30, тогда отношение напряженности у края электрода к средней напряженности:

.

Видно, что у даже довольно тупого края напряженность резко возрастает. Это отношение можно сделать близким к единице, если поверхность электрода выполнить в виде эквипотенциальной поверхности с v £ p/2. Такой профиль электрода называется профилем Роговского (рис.2.21в). При расстоянии а = p (между обкладками расстояние 2p) он имеет координату v = p/2 и для него x = u +1; y = p/2+e u , т.е. у = p/2+e (х -1) (2.108)

Профиль Роговского имеет большое практическое значение в экспериментах по пробою в поле, близком к однородному для устранения краевого эффекта . В центре устройства с электродами Роговского имеет место однородное поле.

Поле расщепленных проводов.

В линиях электропередачи высокого напряжения фазовый провод расщепляют на несколько проводников в целях уменьшения потерь передаваемой мощности из-за коронного разряда. Для описания поля расщепленного

провода можно пользоваться функцией отображения , где n

число отдельных проводников, на которые расщепляется фазовый провод. В качестве иллюстрации метода конформных отображений рассмотрим расщепление на два провода (n =2). (Заметим, что этот случай достаточно просто может быть решен методом изображений )

Пусть плоскость z перпендикулярна расщепленным проводам. Выберем ось х на z плоскости таким образом, чтобы она проходила через оси проводов. Пусть ось y проходит через середину отрезка между проводами. Решение существенно упрощается, если находить не функции x,y =f(u,v) , а функции u,v = f(x,y) . Разделяя действительную и мнимую части, получим:

,

Эквипотенциальным линиям соответствует функция u . Чтобы функция u равнялась нулю, логарифм должен быть равен нулю, а выражение в квадратных скобках должно быть равно 1. Тогда выполняется соотношение:

(х 2 +у 2) 2 = 2а 2 (х 2 -у 2)

Эта функция проходит через начало координат z - плоскости. При u в диапазоне -1,28 < u < 0 на z - плоскости наблюдаются круговые области справа и слева от оси у . При u £ -1.28 это практически точки с координатами х = -а и х = а . При u > 0 решениями являются замкнутые кривые, которые при возрастании u приближаются по форме к окружностям. Эти кривые представляют собой потенциальные линии поля двух цилиндров с зарядами одного знака, т.е. поля двух проводов с одним потенциалом. Наибольший интерес представляют точки на поверхности проводов р 2 и р 1 , в которых, соответственно, наблюдается наибольшая и наименьшая напряженность поля. Точка р 2 находится на поверхности провода в наиболее удаленной от другого провода точке и имеет координаты:

,

С учетом масштабного коэффициента для точки р 2 получаем:

. (2.109)

При s®0 электродная система превращается в систему двух коаксиальных цилиндров (b =0, s =0) (см.(2.18)):

Обычно для линии электропередачи p ³ 200.

Вопросы для самопроверки

1. Приведите фундаментальные уравнения Лапласа в пространстве, однородном и плоскопараллельном поле.

2. Приведите формулы для расчета потенциала и напряженности поля точечного заряда. Определите емкость одиночного металлического шара.

3. Приведите формулы для расчета потенциала и напряженности поля одиночной бесконечно тонкого прямого провода бесконечной длины.

4. Где находятся область с максимальной напряженностью поля у коаксиального кабеля. Найдите оптимальный диаметр внутренней жилы при заданном размере внешней оболочки и разности потенциалов между ними. Определите погонную емкость коаксиального кабеля.

5. Для чего изготовляют кабели с изоляцией из различных типов диэлектриков?

6. Объясните конструкцию конденсаторного ввода и его назначение.

7. В чем состоит метод наложения, и что такое частичная емкость?

8. Что такое электрический диполь, каковы характеристики поля диполя? Для объяснения каких явлений используется понятие диполя?

9. В чем состоит сходство и различие полей двух одноименных и разноименных зарядов?

10. Графически изобразите поле двух разноименно заряженных бесконечных осей. Приведите формулы для расчета такой системы и укажите точки с максимальной напряженностью поля.

11. В чем состоит метод отражения? Объясните сущность метода на примере расчета параметров поля одиночного провода над землей.

12. Приведите методику расчета параметров поля точечного заряда, расположенного вблизи металлического шара.

13. Определите напряженность электрического поля на поверхности одиночного провода, расположенного над землей.

14. Как определить параметры поля трехфазной линии?

15. Определите максимальную напряженность шарового разрядника.

16. Приведите методику нахождения параметров поля, создаваемого проводником конечной длины.

17. Приведите методику нахождения параметров поля, создаваемого кольцевым зарядом.

18. Приведите методику нахождения параметров поля, создаваемого заряженным диском.

19. Как зависят параметры поля от радиуса закругления поверхности электрода? Для чего следует сглаживать и шлифовать поверхности электродов высокого напряжения?

20. Поясните сущность метода конформных отображений и перечислите последовательность расчета по этому методу.

21. Что такое профиль Роговского?

22. Как возникает объемный заряд, и как он изменяет характеристики электрического поля?

23. Какая из характеристик электрического поля является аналогом энергии?

24. Какая из характеристик электрического поля является аналогом силы?

25. С какой целью на линиях электропередач с номинальным напряжением 330 кВ и выше проводник одной фазы выполняют расщеплённым на несколько параллельных проводников? Укажите точки с максимальной напряженностью на расщеплённых проводах. Каковы расстояния между расщепленными проводниками?

26. Где напряженность электрического поля вблизи поверхности земли выше: в углублении (яме, овраге) или на возвышении (холм, бугор)? Ответ поясните графически и расчетом.

27. Как изменяется напряженность электрического поля на уровне земли под одноцепной линией электропередач с горизонтальным расположением фазных проводов?

28. Приведите алгоритм расчета емкости на землю трехфазной ВЛ.

29. С какой целью на аппаратах высокого напряжения ставятся кольцевые экраны?

30. Выведете формулы расчета параметров цилиндрического конденсатора.


Пусть однозначная функция определена в некоторой области и пусть точки и принадлежат области .

Определение. Если существует конечный предел отношения , когда по любому закону стремится к нулю, то:

1) этот предел называется производной функции в точке и обозначается символом

2) в этом случае функция называется дифференцируемой в точке .

Все правила и формулы дифференцирования функции действительного переменного остаются в силе и для функций комплексного переменного.

Теорема. Для того, чтобы функция была дифференцируема в точке , необходимо и достаточно, чтобы:

1) действительные функции и были дифференцируемы в точке *) ;

2) в этой точке выполнялись условия

, (4.2)

называемые условиями Коши-Римана (C.-R. ) или Даламбера-Эйлера.

При выполнении условий (C.-R .) производная функции может быть найдена по одной из следующих формул:

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Функция называется аналитической в области , если она дифференцируема в каждой точке этой области.

Определение. Функция называется аналитической в точке , если она является аналитической в некоторой окрестности точки , т.е. если функция дифференцируема не только в данной точке, но и в ее окрестности.

Из приведенных определений видно, что понятия аналитичности и дифференцируемости функции в области совпадают, а аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши–Римана для всех точек этой области.

Связь аналитических функций с гармоническими . Любая ли функция двух переменных и может служить действительной и мнимой частью некоторой аналитической функции?



Если функция аналитическая в области , то функции и являются гармоническими, т.е удовлетворяют уравнению Лапласа.

и .

Однако если функции и являются произвольно выбранными гармоническими функциями, то функция , вообще говоря, не будет аналитической, т.е. условия для них не всегда будут выполняться.

Можно построить аналитическую функцию по одной заданной гармонической функции (например, ), подобрав другую так, чтобы удовлетворялись условия . Условия (4.2) позволяют определить неизвестную функцию (например, ) по ее двум частным производным или, что то же самое, по ее полному дифференциалу. Отыскивание гармонической функции по ее дифференциалу есть известная из действительного анализа задача интегрирования полного дифференциала функции двух переменных.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через (рис.4.1).

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией

В каждой точке области в каждом направлении коэффициент растяжения будет свой. Для аргумента производной можно записать

где и это соответственно углы и , которые векторы и образуют с действительной осью (рис.4.1). Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Если рассмотреть две кривые и , и , то углы и (рис. 4.1) между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом). Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

УПРАЖНЕНИЯ

55. Показать, что функция дифференцируема и аналитична во всей комплексной плоскости. Вычислить ее производную.

Решение. Найдем и . По определению имеем . Следовательно, .

, ,

Откуда , .

Как видно, частные производные непрерывны на всей плоскости, и функции и дифференцируемы в каждой точке плоскости. Условия выполняются. Следовательно, дифференцируема в каждой точке плоскости, а значит, и аналитична на всей плоскости . Поэтому производную можно найти по одной из формул (4.3):

Наконец, производная может быть найдена по правилам формального дифференцирования: .

56. Выяснить, является ли аналитической функция:

Решение. а) Так как , то , откуда . Как видно, первое условие (4.2) не выполняется ни при каких и . Следовательно, функция не дифференцируема ни в одной точке плоскости, а поэтому и не аналитична.

б) Имеем . Функция и дифференцируемы в каждой точке плоскости, ибо их частные производные непрерывны во всей плоскости. Но условия не выполняются ни в какой точке плоскости, кроме точки , где все частные производные равны нулю. Следовательно, функция дифференцируема только в одной точке, но не является аналитической в ней, так как по определению требуется дифференцируемость в окрестности данной точки.

Таким образом, функция не является аналитической ни при каком значении . Из приведенного примера ясно, что аналитичность функции в точке более сильное требование, чем дифференцируемость ее в этой точке.

57. Существует ли аналитическая функция, для которой ?

Решение. Проверим, является ли функция гармонической. С этой целью находим

и . Из последнего соотношения следует, что не может быть действительной, а также и мнимой частью аналитической функции.

58. Найти, если это возможно, аналитическую функцию по ее действительной части .

Решение. Прежде проверим, является ли функция гармонической. Находим , , , и . Гармоническая на всей плоскости функция сопряжена с условиями Коши-Римана , . Из этих условий получаем , . Из первого уравнения системы находим интегрированием по , считая постоянным.

где произвольная функция, подлежащая определению. Найдем отсюда и приравняем к выражению , ранее найденному: . Получим дифференциальное уравнение для определения функции , откуда

Итак, . Тогда, т.е. в данной точке происходит вращение на угол и образующие между собой угол , отображаются соответственно в лучи и , образующие между собой угол . Поэтому в точке конформность отображения нарушается в силу того, что нарушается свойство консерватизма углов: углы не сохраняются, а утраиваются.

Пусть функция определена в некоторой окрестности точки z 0 .

Определение 1. Отображение называется конформным в точке z 0 , если оно обладает свойствами сохранения углов и постоянства растяжений в точке z 0 .

Пусть функция f(z) однолистная в конечной области E .

Определение 2. Отображение называется конформным в области E , если оно конформно в каждой точке этой области.

Очевидно, линейная функция (b и a ¹ 0 – комплексные числа) осуществляет конформное отображение всей комплексной плоскости z на комплексную плоскость w. Ради наглядности совместим эти плоскости так, чтобы начала и оси координат совпадали. Тогда в частности w = z + z 0 осуществляет сдвиг всей плоскости на вектор z 0 , (a - действительное) – поворот плоскости вокруг начала координат на угол a, а w = kz (k > 0) – преобразование подобия, k – коэффициент подобия. Записав линейную функцию в виде видим, что ее можно представить как произведение операций сдвига, подобия и вращения. Т. к. при этих операциях свойства сохранения углов и постоянства растяжений очевидны, то это отображение конформно.

Углом между прямыми , проходящими через бесконечно удаленную точку, называют угол между образами этих кривых при отображении в точке w = 0.

Например, оси декартовой системы координат пересекаются в нуле под углом Поскольку на расширенной комплексной плоскости бесконечно удаленная точка одна, то оси пересекаются и в бесконечно удаленной точке При отображении оси координат отображаются сами в себя (плоскости z и w совмещены) и, следовательно, в бесконечно удаленной точке они пересекаются также под углом

Определение 2 распространяют на любую область расширенной комплексной плоскости. Если доопределить линейную функцию, полагая при то можно убедиться, что она конформно отображает расширенную комплексную плоскость z w.

Отметим свойства функции f (z ), которыми она должна обладать, чтобы отображение, осуществляемое ею, было конформным.

Теорема 1. Если функция f (z ) однолистная в области Е расширенной комплексной плоскости и аналитическая всюду за исключением быть может одной точки в которой но то отображение w = f(z) области Е на область G значений функции конформно (без доказательства).

Рассмотрим дробно-линейную функцию При с = 0 она переходит в линейную, рассмотренную выше, поэтому положим с ¹ 0. Дробно-линейная функция однолистная на всей комплексной плоскости, т. к. обратная функция однозначная. Она аналитическая всюду, исключая точку В ней она обращается в бесконечность,

Функция удовлетворяет теореме 1 на всей комплексной плоскости, следовательно, конформна на всей комплексной плоскости. Доопределим функцию, полагая при и при Можно убедиться, что в этом случае дробно линейная функция конформно отображает расширенную комплексную плоскость z на расширенную комплексную плоскость w .



Справедливо и обратное утверждение, если функция конформно отображает расширенную комплексную плоскость z на расширенную комплексную плоскость w , то эта функция дробно-линейная.

Прямую на расширенной комплексной плоскости будем считать окружностью бесконечного радиуса. Можно доказать, что любую окружность на расширенной комплексной плоскости дробно-линейная функция отображает на окружность, а полуплоскость – в круг. При этом всякое дробно-линейное отображение полуплоскости z > 0 на круг имеет вид

где Im z 0 >0, a - действительное.

Рассмотрим функцию

которую называют функцией Жуковского.

Функция (2) определена и однозначна на всей комплексной плоскости (исключая точку z = 0), но не однолистна на ней, т. к. обратная функция неоднозначная. Точки являются точками ветвления.

Найдем область однолистности. Для этого положим, что две различные точки z 1 и z 2 отображаются в одну и ту же точку w . Тогда получим

Таким образом, всякая область, не содержащая ни одной пары точек, удовлетворяющей условию будет областью однолистности функции Жуковского. Этому условию удовлетворяет, например, круг ½z ½< 1 или внешность этого круга ½z ½> 1. В этих областях функция (2) удовлетворяет теореме 1 и, следовательно, отображает эти области конформно.

Найдем область, на которую конформно отображает функция Жуковского круг ½z ½< 1. Положим Подставляя в (2) и отделяя действительную u и мнимую v части, получим

Уравнения (3) есть уравнения эллипса с полуосями

Таким образом, всякая окружность отображается в эллипсе. Из (4) следует, что при r ®1 a ®1, b ®0, т. е. граница круга ½z ½< 1 отображается в дважды пробегаемый отрезок ½u ½£ 1 действительной оси плоскости w . При r ®0 и , следовательно, круг ½z ½< 1 отображается на расширенную комплексную плоскость w с разрезом от точки z = -1 до точки z = 1 (см. рис 6¢).

Аналогично можно убедиться, что и внешность круга ½z ½> 1 отображается функцией Жуковского на расширенную комплексную плоскость с тем же разрезом. Таким образом, функция Жуковского отображает расширенную комплексную плоскость на поверхность Римана, состоящую из двух плоскостей склеенных по разрезу действительной оси от точки z = -1 до точки z = 1.

Основная задача теории конформных отображений заключается в нахождении функции, отображающей одну заданную область на другую заданную область. Достаточно простого алгоритма решения этой задачи не существует, поэтому на практике следует руководствоваться общими условиями существования конформного отображения и общими принципами. Перечислим важнейшие из них. Во-первых, нельзя конформно отобразить многосвязную область на односвязную, а во-вторых, нельзя всю комплексную плоскость конформно отобразить на конечную область. Однако, две произвольные односвязные области, границы которых состоят более, чем из одной точки, всегда можно конформно отобразить друг на друга.

Теорема 2 (принцип соответствия границ). Если функция w = f (z ) конформно отображает одну область на другую, то она взаимно однозначно отображает и границы этих областей (без доказательства).

Справедлива и обратная теорема. Если функция w = f (z ), аналитическая в области Е и непрерывная на ее границе, однозначно отображает эту границу на некоторую кривую Г , то функция f (z ) конформно отображает область Е на область G , границей которой является кривая Г .

Пример. Найти такое конформное отображение верхней полуплоскости с разрезом по мнимой оси от точки z = 0 до точки z = i (см. рис. 7 а) на единичный круг, чтобы точка отобразилась в центр этого круга.

Решение. Разгладим сначала разрез. Т.к. на разрезе точки имеют аргумент p/2, то воспользуемся функцией w 1 = z 2 , поскольку она удваивает аргумент точки. Эта функция аналитическая и однолистная в верхней полуплоскости и поэтому конформно отображает заданную область на плоскость w , с разрезом [-1,¥) (см. рис. б).

Согласно принципу соответствия границ ломаная ABCDA отобразится в разрез ABCDA плоскости w 1 . Обозначения соответственных точек при отображении на рисунках сохранены. Буквой A обозначена бесконечно удаленная точка плоскости z (а также плоскостей w 1 , w 2 и w 3).

Осуществим теперь сдвиг комплексной плоскости w 1 так, чтобы точка С попала в начало координат. Для этого воспользуемся линейным отображением w 2 = w 1 + 1 (см. рис. в).

Затем комплексную плоскость w 2 с разрезом и (I, +оо[ Плоскость с разрезом по действительному лучу Плоскость с разрезом по отрезку (О, 1J № 21 1лоскость с разрезами ю лучам, лежащим ia прямой, проходящей через ачало координат по действительным лучам ]-«ю, 0] и (1. Плоскость с разрезом по действительному лучу (0, +во(Плоскость с разрезом по дуге окружности Ixl - 1, lm z > О Плоскость с разрезом по дуге окруж ности III - I, Re z > О Плоскость с разрезом по действительн ому лучу (0, Плоскость с разрезом no дуге окруж ности Плоскость с разрезом по действительному лучу [С, + со [ № 25 Полуплоскость с разрезами Полуплоскость l с разрезом по отрезку с разрезом по мнимому лучу Круг с разрезами Круг 1 с разрезом по отрезку (1/2, 1J №30 Плоскость с разрезом по отрезку {-1, 5/4] Круг Izl с разрезами по отрезкам (-1. -1/2] и (1/2, 1] № 31 Плоскость с разрезами по отрезиам I -5/4, 5/4] Круг Ijl симметричными разрезами по мнимой оси Круг lie с симметричными разрезами по действительной оси Внешность круга с разрезами Внешность единичного круга I с разрезом по отрезку и 11, 2) №34 Плоскость с разрезом по отрезку [ -1, 5/4] Плоскость с разрезом по отрезку I - 5/4, 3/4] w = e"^z Внешность единичного круга Izl > 1 с разрезами по отрезкам, являющимися продолжениями его диаметра Внешность единичного круга Iwl > 1 с разрезами по отрезкам, лежащим на действительной оси Полуируг с разрезами -г2 Nfc 36 Круг Iwl с разрезом по отрезку [ -1/4, 1] Полукруг, с разрезом по отрезку (0, i/2) Полукруг, с разрезом по отрезку }