Компьютерный блок питания 7500. Зарядное устройство из блока питания компьютера

У меня в мастерской завалялось несколько старых блоков питания от компьютера. В свое время их приходилось часто менять. Лежат хламом а выкинуть жалко, всё думал куда бы их применить. Оказалось не только я ломал голову над этой задачей. Вот, нашел такой проект. Вполне так симпатично получается. Аварийный фонарь из старого блока питания. А если у вас завалялся аккумулятор от бесперебойника, то у вас уже почти все есть, что надо. Единственно на месте автора я бы не городил схему с крокодилами для зарядки аккумулятора от внешнего зарядного устройства а расположил бы его внутри корпуса. Благо места хватает. Да и лампу бы взял светодиодную. Тогда даже полудохлый старый аккумулятор сможет светить достаточно долго.

Такой фонарь будет очень удобен как автомобильный. Надо только продумать возможность заряжать его от бортовой сети или от прикуривателя. Ну а если у вас еще нет нового автомобиля можно присмотреть его .









У вас есть много запасных частей компьютера? Тебе нравится быть готовы к чрезвычайным ситуациям? Готовы ли вы к зомби-апокалипсису? Вы понимаете, что я имею ввиду, когда говорю слово «Джанк-панк»?

Если так, то вы должны построить себе переработанных компьютерного блока питания фонарь!
Используя спасти, многократно и повторно использовать компоненты, мы построим 12В/11вт электрический фонарь.

Это все недавно началось, когда я разговаривала с подругой по разработки к реализации Милуоки. Я работал на простой проект электропроводка и в чате, и друг показал мне пару батареи 5ah свинцово-кислотные аккумуляторы, он утолил, которые вполне хорошие, и он давал всем, кто хотел. Это отличное Размер аккумуляторная батарея, а также размером и формой напомнил мне «по-старинке» фонарики, которые используют 9В сухих клеток. Это, а также обсуждение фильмов про зомби, мне интересно — у меня есть навыки, чтобы не только построить портативный свет от чуть больше подручных материалов, но и построить что-то лучше, чем я мог бы купить?

Я принял это как вызов и приступила к сборке фонаря питание.

Шаг 1: Инструменты И Материалы




Для начала, давайте рассмотрим инструменты и материалы для проекта.

Почти все материалы для данного проекта были переработаны, восстановленные или повторно. Проект был основан на материалах, которые у меня были на руках. Если вы хотите построить что-то подобное, вы могли бы что-то купить. А еще лучше, почему бы вам не создать проект, используя только подручные материалы, и посмотреть, что вы придумали!

Материалы:
Умер блок питания компьютера
Ландшафтное освещение лампы 12В
Перезаряжаемые батарея 12V — 5ah р или другой Размер, который устанавливается внутри источника питания
Пена или другой интервал металлолома
Клей
1/4″ обжимной-на клеммах именами
Связей Zip
Электрические ленты или термоусадочной
Зарядное Устройство

Вы могли заметить, что я не любой коммутатор или любой провод в список материалов. Это потому, что мы будем повторно использовать переключатель, проводка, и мощности порта уже в электропитании.

Инструменты простые, что ни один уважаемый Сделай сам интерьер будет без, но когда доходит до дела, большинство могут быть заменены Швейцарский армейский нож или Мультитул.

Инструменты:
Отвертки Phillips
Инструмент Для Зачистки Проводов
Провода Щипцов
Бокорезы
Сверла и биты
Мультиметр (Опционально)

Шаг 2: открыть и удалить ненужные









Первым делом нужно открыть блок питания.

Удалите четыре винта Phillips, которые держат крышку блока питания и снимите крышку. Крышка на самом деле 3 стороны, или половине питания. Отделить две части.

Внутри вы увидите множество проводов, монтажной платы, вентилятор и переключатель и порт питания.

Удалите четыре винта, которые крепят Вентилятор охлаждения. Отключите вентилятор от платы, а затем установить его в сторону, как материал для одной из своих будущих проектов.

Снять винты удерживая монтажной платы. Найдите провода от переключателя и разъем питания, и следовать за ними туда, где они соединяются на плате. Обрезок провода близко к доске, чтобы максимизировать длину отрезка проволоки, неподвижно закрепленные на выключатель и разъем питания.

Удалите печатную плату и установить в сторону.

Сейчас у вас в основном пустая коробка с парой проводов на коммутаторе и питание. Мы будем использовать их как часть проекта. Вы должны иметь достаточно провода до аккумулятора и лампочки.

Шаг 3: Аккумулятор


Аккумулятор, используемый для проекта в 5 А * ч герметичная свинцово-кислотная батарея. Он отлично помещается внутри корпуса блока питания.

Клеммы на аккумуляторе не 1/4″ разъемы мужской вещи. Это легко работать с, опрессовки лопата Разъемы на проводах, а потом просто толкает их на разъем клеммы аккумулятора.

Аккумулятор отмечен положительный красным и отрицательные черным, и имеет пластиковый протектор около положительной клеммы, чтобы помочь уменьшить случайного короткого замыкания.

Положите батарею в одной половине корпуса блока питания, чтобы убедиться, что он подходит. Вы можете использовать карандаш или маркер, чтобы обрисовать его, так что вы знаете, где линии до батареи без дела.

Шаг 4: Светильник



Лампа 12 вольт, 11-ваттная Лампа оставшиеся от другого проекта. Обычно она может использоваться на открытом воздухе, низковольтное ландшафтное освещение, питание от 12V трансформатор переменного тока.

Что-то как простой как лампочка действительно не волнует, если он питается от переменного или постоянного тока, пока напряжение является правильным. Мы будем использовать 12V батареи, так что нет никакой проблемы переделать этот шарик.

Лампа займет место вентилятор. Держите шарик в круглой решеткой, где вентилятор был. Марк, сколько места лампочки будет занимать. Она круглая, и вентилятор, так что он поместится в порядке, но не весь путь обратно в корпус. (Другой Размер ламп может располагаться заподлицо, или даже внутри корпуса!)

Использовать боковые резцы или оловянно-СНиПы, СНиП вентилятор оловянную решетку, чтобы сделать лампы подходят. Также можно использовать Дремель или другой режущий инструмент.

Тест-фит лампочки, но не пытайтесь привязать его еще. Во-первых, мы хотим, чтобы провод до фонаря.

Шаг 5: подключение его






Проводка на фонарь довольно простой. Полный кругооборот всего аккумулятора переключиться на лампочку и обратно на минус АКБ.

Поскольку это аккумуляторная батарея, неплохо было бы также добавить способ зарядить фонарь без его демонтажа для доступа к батареи. Для этого мы будем использовать шнур питания порт в качестве места для подключения зарядного устройства.

Во-первых, проверьте провода, выключатель и разъем питания достигнет батареи и лампочки.

В «115/230» выключатель питания не будет использоваться, поэтому ее красные провода могут быть опущена-офф. Сохранить их для повторного использования. Это хорошо, тяжелый провод, а красный обычно используется для обозначения положительной полярности.

Полосы и скрутите вместе по одному проводу от каждого переключателя мощности и входной мощности. Добавить женский стержень лопаты и обожмите его. Этот разъем идет к положительной клемме аккумулятора. Другой провод выключателя идет на лампочку.

Другой провод силовой вход идет на противоположной стороне шарика. Той стороне шарика тоже идет к аккумулятору отрицательный. Эта Лампа имеет «мульти-терминалы», поэтому позволяют подключать два провода сразу к терминалу — один с разъемом вещи, и одно с голого провода затянуты под винт.

Сделав это, власть будет идти только до лампочки, когда выключатель включен, но власть всегда будет подключен к двум контактам на входе питания. (Отрезать третий провод.) Так что зарядное устройство можно подключить к двум контактам для зарядки аккумулятора. Марк двумя контактами, соблюдая полярность.

(Примечание о повторном использовании переключателей: Переключатели и другие компоненты часто имеют 2 комплекта оценок — одна для переменного тока и одна-для постоянного тока. Рейтинги, как правило, гораздо ниже, для постоянного тока. Используйте фонарик, чтобы внимательно посмотреть на сторону переключателя, и вы увидите его мощности. Потому что это только проект, 1 Ампер, этот переключатель будет нормально работать.)

Шаг 6: Ручки








Один классический элемент фонарь, расположенный ручка, отдельно от тела света.
(В отличие от фонарика, где вы просто схватите вокруг всей формы фонарик.)

Обычно, я хотел бы использовать некоторые болты и проставки, и крест-кусок дерева или металла, для сборки ручки. Однако, у меня не было материала под рукой, который, казалось, чтобы удовлетворить его — помимо провода еще подключены к плате, отложите раньше.

Эти провода были в комплекте вместе плотно, а диаметр был примерно правильно, чтобы быть удобным в руке. Я срезал пучок проводов близко к поверхности платы.

Я измерил диаметр проволочного жгута путем подачи его через индекс дрель. Если казалось, чтобы соответствовать лучшим в 1/2″ отверстие. Это означало, чем я смог просверлить 1/2″ отверстия через лист металла, а потом кормить проводов насквозь. Я просверлил два отверстия, по центру стороны в сторону. Там уже стояли два штампа знаки в металле около 3/4″ с любого конца, так что я использовал их в качестве эталона для, как далеко от края просверлить.

С отверстиями, я кормила оголенный конец провода через изнутри корпуса, и сверху, и обратно через другое отверстие. Оригинальный компьютерный разъем питания платы является слишком большой, чтобы соответствовать через отверстие, так что он действует как стоп.

На другом конце провода. Я завернул две застежки-завязки вокруг провода, чтобы связать их в месте. Тогда я сложил туда лишние провода, связали снова, и отрезать лишние провода.

Шаг 7: Сборка









С проводкой закончили и ручки сделать, все это должно быть собрано вместе.

Сейчас настало время, чтобы клей в место лампы и батареи.

Приклеил фонарь на место с клеем кремния. Он хорошо работает в широком диапазоне температур. Лампа будет нагреваться при использовании, так жарко-клей будет плохим выбором.

С другой стороны, горячий клеевой пистолет работал отлично клеить батареи в корпус. Я тоже склеил два кусочка пены ломом действовать в качестве прокладки между батареей и крышкой.

Как только клей охлаждения/осушения, установите на место крышку на корпус (см. пены обивка и провод ручки) и поставить четыре винты крышки обратно.

Чтобы перезарядить, я просто крюк небольшой зарядное устройство у меня уже было два штырька зарядки, который я отметил полярность.

Шаг 8: проверьте его!



В этой статье расскажу как из старого компьютерного блока питания сделать очень полезный для любого радиолюбителя лабораторный блок питания.
Компьютерный блок питания можно очень дешево купить на местной барахолке или выпросить у друга или знакомого, сделавшего апгрейд своего ПК. Прежде прежде чем начать работу над БП, следует помнить, что высокое напряжения опасно для жизни и нужно соблюдать правила техники безопасности и проявлять повышенную осторожность.
Сделанный нами источник питания будет иметь два выхода с фиксированным напряжением 5В и 12В и один выход с регулируемым напряжением 1,24 до 10,27В. Выходной ток зависит от мощности используемого компьютерного блока питания и в моем случае составляют около 20А для выхода 5В, 9А для выхода 12В и около 1.5А для регулируемого выхода.

Нам понадобятся:


1. Блок питания от старого Пк (любой ATX)
2. Модуль ЖК вольтметра
3. Радиатор для микросхемы(любой, подходящий по размеру)
4. Микросхема LM317 (регулятор напряжения)
5. электролитический конденсатор 1мкФ
6. Конденсатор 0.1 мкФ
7. Светодиоды 5мм - 2шт.
8. Вентилятор
9. Выключатель
10. Клеммы - 4шт.
11. Резисторы 220 Ом 0.5Вт - 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм.

Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой.

Общие характеристики блока питания ATX:

Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:
а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.

Основными достоинствами таких источников являются:
- Высокая мощность при небольших размерах
- Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.

К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.

Мощность блока питания

Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию:


Напряжение - Ток

3.3В - 15A

5В - 26A

12В - 9А

5 В - 0,5 А

5 Vsb - 1 A


Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо.

Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK.

Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме.
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.

ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Модернизация блока питания

1. Разборка и чистка


Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода


Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник - лишние провода отпаиваем, если нет - откусываем кусачками и изолируем термоусадкой.

3. Изготовление передней панели.


Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.

4. Размещение стоек


Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.

5. Регулировка и стабилизация напряжения

Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:


Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:


Либо упрощенная форма этого выражения:

Vout = 1.25(1+R2/R1)


Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.

Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.

Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома

Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм

На этом расчет регулятора закончен.

6. Сборка регулятора

Сборку регулятора выполним по следующей схеме:



Ниже приведу принципиальную схему:


Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.

Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.

Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:

Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.


Мне нужен был легкий блок питания, для разных дел (экспедиций, питания разных КВ и УКВ трансиверов или для того чтобы переезжая на другую квартиру не таскать с собой трансформаторный БП) . Прочитав доступную информацию в сети, о переделке компьютерных БП - понял, что разбираться придется самому. Все что нашел, было описано както сумбурно и не совсем понятно (для меня) . Здесь я расскажу, по порядку, как переделывал несколько разных блоков. Различия будут описаны отдельно. Итак, я нашел несколько БП от старых PC386 мощностью 200W (во всяком случае, так было на крышке написано) . Обычно на корпусах таких БП пишут примерно следующее: +5V/20A , -5V/500mA , +12V/8A , -12V/500mA

Токи указанные по шинам +5 и +12В - импульсные. Постоянно нагружать такими токами БП нельзя, перегреются и треснут высоковольтные транзисторы. Отнимем от максимального импульсного тока 25% и получим ток который БП может держать постоянно, в данном случае это 10А и до 14-16А кратковременно (не более 20сек) . Вообще-то тут нужно уточнить, что 200W БП бывают разные, их тех что мне попадались не все могли держать 20А даже кратковременно! Многие тянули только 15А, а некоторые до 10А. Имейте это в виду!

Хочу заметить что конкретная модель БП роли не играет, так как все они сделаны практически по одной схеме с небольшими вариациями. Наиболее критичным моментом, является наличие микросхемы DBL494 или ее аналогов. Мне попадались БП с одной микросхемой 494 и с двумя микросхемами 7500 и 339. Всё остальное, не имеет большого значения. Если у вас есть возможность выбрать БП из нескольких, в первую очередь, обратите внимание на размер импульсного трансформатора (чем больше, тем лучше) и наличие сетевого фильтра. Хорошо, когда сетевой фильтр уже распаян, иначе его придётся самому распаять, чтобы помехи снизить. Это несложно, намотайте 10 витков на ферритовом кольце и поставьте два конденсатора, места для этих деталей уже предусмотрены на плате.

ПЕРВООЧЕРЕДНЫЕ МОДИФИКАЦИИ

Для начала, сделаем несколько простых вещей, после которых вы получите хорошо работающий блок питания с выходным напряжением 13.8В, постоянным током до 4 - 8А и кратковременным до 12А. Вы убедитесь что БП работает и определитесь, нужно ли продолжать модификации.

1. Разбираем блок питания и вытаскиваем плату из корпуса и тщательно чистим её, щеткой и пылесосом. Пыли быть не должно. После этого, выпаиваем все пучки проводов идущие к шинам +12, -12, +5 и -5В.

2. Вам нужно найти (на плате) микросхему DBL494 (в других платах стоит 7500, это аналог) , переключить приоритет защиты c шины +5В на +12В и установить нужное нам напряжение (13 - 14В) .
От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше, но это не принципиально) , один идёт на корпус, другой к шине +5В. Он нам и нужен, аккуратно отпаиваем одну из его ножек (разрываем соединение) .

3. Теперь, между шиной +12В и первой ножной микросхемы DBL494 припаиваем резистор 18 - 33ком. Можно поставить подстроечный, установить напряжение +14В и потом заменить его постоянным. Я рекомендую установить не 13.8В, а именно 14.0В, потому что большинство фирменной КВ-УКВ аппаратуры работает лучше при этом напряжении.


НАСТРОЙКА И РЕГУЛИРОВКА

1. Пора включить наш БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12В подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12В., устанавливаем напряжение от 13.9 до +14.0В.

2. Теперь проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2В и не больше 3В. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12В. Обратите особое внимание на этот пункт, это ключевой момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.

3. Закоротите тонким проводом шину +12В на корпус, напряжение должно пропасть, чтобы оно восстановилось - выключите БП на пару минут (нужно чтобы ёмкости разрядились) и включите снова. Напряжение появилось? Хорошо! Как видим, защита работает. Что, не сработала?! Тогда выкидываем этот БП, нам он не подходит и берем другой...хи.

Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения радиостанции. Блоком питания можно пользоваться! Подключите трансивер, но давать нагрузку более 12А пока нельзя! Автомобильная УКВ станция, будет работать на полной мощности (50Вт) , а в КВ трансивере придётся установить 40-60% мощности. Что будет если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы. В этом случае напряжение просто пропадет и последствий для аппаратуры не будет. После их замены, БП снова работоспособен!

1. Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса. Под два винта вентилятора, подкладываем шайбы чтобы его немного развернуть, а то дует только на высоковольтные транзисторы, это неправильно, нужно чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо.

Перед этим, вентилятор желательно смазать. Если он сильно шумит поставьте последовательно с ним резистор 60 - 150ом 2Вт. или сделайте регулятор вращения в зависимости от нагрева радиаторов, но об этом чуть ниже.

2. Выведите две клеммы из БП для подключения трансивера. От шины 12В до клеммы проведите 5 проводов из того пучка который вы отпаяли вначале. Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором. Минусовой провод, также подведите к клемме пятью проводами.

В некоторых БП, параллельно клеммам к которым подключается трансивер, поставьте резистор сопротивлением 300 - 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.

3. Умощняем шину +12В и избавляемся от лишнего хлама. Вместо диодной сборки или двух диодов (которые часто ставят вместо неё) , ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5В, выпаиваем её и выбрасываем.

Под нагрузкой, наиболее сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Теперь наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Как я говорил ранее, он может доходить до 16А (для БП мощностью 200Вт) .

4. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12В, стоящий там ранее дроссель (он более высокий и намотан тонким проводом) выпаяйте и выбросите. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно чтобы он был для лучшей фильтрации возможных помех.

5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех. Шина +12В на нем намотана более тонким проводом, а шина +5В самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12В и +5В (или включите все обмотки параллельно) . Теперь шина +12В проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше.

6. В БП установлены два радиатора, один для мощных высоковольтных транзисторов, другой, для диодных сборок на +5 и +12В. Мне попадались несколько разновидностей радиаторов. Если, в вашем БП, размеры обоих радиаторов 55x53x2мм и в верхней части у них есть ребра (как на фотографии) - вы можете рассчитывать на 15А. Когда радиаторы имеют меньший размер - не рекомендуется нагружать БП током более 10А. Когда радиаторы более толстые и имеют в верхней части дополнительную площадку - вам повезло, это наилучший вариант, можно получить 20А в течении минуты. Если радиаторы маленькие, для улучшения теплоотдачи, можно закрепить на них небольшую пластину из дюраля или половинку от радиатора старого процессора. Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору, иногда они болтаются.

7. Выпаиваем электролитические конденсаторы на шине +12В, на их место ставим 4700x25В. Конденсаторы на шине +5В желательно выпаять, просто для того, чтобы места свободного больше стало и воздух от вентилятора лучше детали обдувал.

8. На плате вы видите два высоковольтных электролита, обычно это 220x200В. Замените их на два 680x350В, в крайнем случае, соедините параллельно два по 220+220=440мКф. Это важно и дело тут не только в фильтрации, импульсные помехи будут ослаблены и возрастёт устойчивость к максимальным нагрузкам. Результат можно посмотреть осциллографом. Во общем, надо делать обязательно!

9. Желательно чтобы вентилятор менял скорость в зависимости от нагрева БП и не крутился когда нет нагрузки. Это продлит жизнь вентилятору и уменьшит шума. Предлагаю две простые и надежные схемы. Если у вас есть терморезистор, смотрите на схему посередине, подстроечным резистором устанавливаем температуру срабатывания терморезистора примерно +40С. Транзистор, нужно ставить именно KT503 с максимальным усилением по току (это важно), другие типы транзисторов работают хуже. Терморезистор любой типа NTC, это означает, что при нагреве его сопротивление должно уменьшаться. Можно использовать терморезистор с другим номиналом. Подстроечный резистор должен быть многооборотным, так легче и точнее настроить температуру срабатывания вентилятора. Плату со схемой прикручиваем к свободному ушку вентилятора. Терморезистор крепим к дросселю на ферритовом кольце, он нагревается быстрее и сильнее остальных деталей. Можно приклеить терморезистор к диодной сборке на 12В. Важно, чтобы ни один из выводов терморезистора не коротил на радиатор!!! В некоторых БП, стоят вентиляторы с большим током потребления, в этом случае после КТ503 нужно поставить КТ815.

Если терморезистора у вас нет, сделайте вторую схему, смотрите справа, в ней в качестве термоэлемента используются два диода Д9. Прозрачными колбами приклейте их к радиатору на котором установлена диодная сборка. В зависимости от применяемых транзисторов, иногда нужно подобрать резистор 75 ком. Когда БП работает без нагрузки, вентилятор не должен крутиться. Все просто и надежно!

ЗАКЛЮЧЕНИЕ

От компьютерного блока питания мощностью 200W, реально получить 10 - 12А (если в БП будут стоять большие трансформаторы и радиаторы) при постоянной нагрузке и 16 - 18А кратковременно при выходном напряжении 14.0В. Это значит, что вы можете спокойно работать в режимах SSB и CW на полной мощности (100Вт) трансивера. В режимах SSTV, RTTY, MT63, MFSK и PSK, придётся уменьшить мощность передатчика до 30-70Вт., в зависимости от продолжительности работы на передачу.

Вес переделанного БП, примерно 550гр. Его удобно брать с собой в радиоэкспедиции и различные выезды.

При написании этой статьи и во время экспериментов, было испорчено три БП (как известно, опыт приходит не сразу) и удачно переделано пять БП.

Большой плюс компьютерного БП, в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250В. Некоторые экземпляры работают и при большем разбросе напряжений.

Смотрите фотографии удачно переделанных импульсных блоков питания:

Игорь Лаврушов
г.Кисловодск

В современном компьютере единственное, что не устаревает стремительно, — это блок питания (БП). Если системный блок через некоторое время уже не представляет никакого интереса, то блок питания можно использовать отдельно как источник электричества малого напряжения.

Компьютерный БП ATX — довольно мощный и при этом благодаря импульсной схеме преобразования напряжения имеет малые габариты. Блок хорошо защищен от перегрузок и по току, и по напряжению, и от короткого замыкания (фото 1). Сложная электронная схема обеспечивает на выходе ряд стандартных для всех компьютеров напряжений: +3,3 В, +5 В, +12 В, -12 В, -5 В и дежурное 5 В. В зависимости от назначения мощности различных БП. а также их максимальные токи нагрузки различаются.

Я предлагаю использовать компьютерные блоки для питания разных устройств. Для этого необходима небольшая их доработка.

Маркировка проводов и конфигурация контактного разъёма компьютерных БП — стандартны (см. таблицы и фото).

Хороший блок питания должен выдерживать диапазон изменения входного напряжения при сохранении стабильной работы. Для 110-вольтовых моделей хороший блок питания должен «держать» от 90 до 130В, для 220В — 180 до 270.

Вывод 14: PS_0N Power Supply On (active low). Это управляющий вход. При замыкании общим проводом с СОМ блок питания включается, при размыкании — отключается.

Вывод 9: +5 VSB, Standby Voltage (max 2А) — дежурное питание +5 В присутствует даже при выключенном БП.

Так как импульсный блок питания без нагрузки включать не рекомендуется, необходимо обеспечить ему хотя бы минимальную нагрузку. Я использовал два светодиода и подключил их черезрезисторы около 1 кОм к контактам +5 В и +12 В. Они и в дальнейшем будут индикаторами наличия напряжения на этих выходах.

Кроме того, на каждой линии всех требуемых напряжений необходимо установить конденсаторные фильтры. Чем больше будет их ёмкость (от 1 000 мкФ и выше), тем лучше. Для проверки работоспособности БП нужно включить его в сеть и убедиться в наличии дежурного питания (+5 В) на выводе 9 ОС. Если оно присутствует, то можно идти дальше и проводами соединить вывод 1Д PS_0N с корпусом СОМ, благодаря чему блок питания (если он исправен) сразу запустится. Эти два провода нужно подсоединить к любому переключателю (фото 2). Таким образом и будет происходить управление включением и выключением нашего блока.

Для напряжения +5 В можно использовать ионистор любой ёмкости на напряжение 5,5 В, что благоприятно отразится на работе в любом режиме. Если необходимо напряжение 3,3 В (контакт 11 на 20-контактном разъёме) для питания, например, фотоаппарата, то для него тоже лучше использовать ионистор. Эти немногочисленные элементы нужно разместить на подходящей монтажной плате (фото 3).

Вот и всё, варианты размещения элементов и выключателя могут быть разными — в зависимости от конкретных возможностей. Так как на полной нагрузке (ток 15-20 А) в новых условиях блок питания вряд ли будет работать, то интенсивное охлаждение ему не потребуется, и для снижения шума внутренний вентилятор (на 12 В) можно питать через ограничительный резистор сопротивлением 100 Ом с рассеиваемой мощностью 1 Вт.

Таблица 1. Основной разъём питания.

№ кон-такта

Цвет провода

Оранжевый

Оранжевый

3.3 В (дат-чик +3.3 В)

Оранжевый (коричневый)

Таблица 2. Дополнительный соединитель для блоков с большими выходными токами.

№ кон-такта

Цвет провода

Оранжевый

Оранжевый

Компьютерный блок питания как источник электричества малого напряжения - фото

1.Общий вид блока питания, извлечённого из системного блока компьютера.

2. Установив выключателя на модернизированном блоке питания.

3. Монтажные платы для установки ёмкостных фильтров на выходах с разным напряжением.

4. Разъёмы на выходе блока питания: а — 20-контактный; 6 — 4-контактный.

Схема контактов для разъемов компьютерных компонентов.

Алексей Усков, Владивосток

Шт. 110 шт.-184 шт. Мини Магнитный конструктор Строительный набор модели…

1106.33 руб.

Бесплатная доставка

Или как сделать дешёвый блок питания для усилителя на 100 Вт

А сколько будет стоить УНЧ Ватт на 300?

Смотря для чего:)

Дома слушать!

Баксов *** нормальный будет...

OMG! А подешевле никак?

Ммммм... Надо подумать...

И вспомнилось мне об импульсном БП, достаточно мощном и надёжном для УНЧ.

И начал я думать, как переделать его под наши нужды:)

После недолгих переговоров, человек, для которого всё это замышлялось сбавил планку мощности с 300 Ватт до 100-150, согласился пожалеть соседей. Соответственно импульсника на 200 Вт будет более, чем достаточно.

Как известно, компьютерный блок питания формата АТХ выдаёт нам 12, 5 и 3,3 В. В АТ блоках питания было ещё напряжение "-5 В". Нам эти напряжения не нужны.

В первом попавшемся БП, который был вскрыт для переделки стояла полюбившаяся народом микросхема ШИМ - TL494.

Блок питания этот был АТХ на 200 Вт фирмы уже не помню какой. Особо не важно. Поскольку товарищу "горело", каскад УНЧ был просто куплен. Это был моно усилитель на TDA7294, который может выдать 100 Вт в пике, что вполне устраивало. Усилителю требовалось двухполярное питание +-40В.

Убираем всё лишнее и ненужное в развязанной (холодной) части БП, оставляем формирователь импульсов и цепь ОС. Диоды Шоттки ставим более мощные и на более высокое напряжение (в переделанном блоке питания они были на 100 В). Так же ставим электролитические конденсаторы по вольтажу превосходящие требуемое напряжение вольт на 10-20 для запаса. Благо, место есть, где разгуляться.

На фото смотреть с осторожностью: далеко не все элементы стоят:)

Теперь основная "переделываемая деталь" - трансформатор. Есть два варианта:

  • разобрать и перемотать под конкретные напряжения;
  • спаять обмотки последовательно, регулируя выходное напряжение с помощью ШИМ

Я не стал заморачиваться и выбрал второй вариант.

Разбираем его и паяем обмотки последовательно, не забывая сделать среднюю точку:

Для этого выводы трансформатора были отсоеденены, прозвонены и скручены последовательно.

Для того, чтобы видеть: ошибся я обмоткой при последовательном соединении или нет, генератором пускал импульсы и смотрел, что получалось на выходе осциллографом.

В конце этих манипуляций я соединил все обмотки и убедился в том, что со средней точки они имеют одинаковый вольтаж.

Ставим на место, рассчитываем цепь ОС на TL494 под 2,5V с выхода делителем напряжения на вторую ногу и включаем последовательно через лампу на 100Вт. Если всё заработает хорошо - добавляем в цепочку гирлянды ещё одну, а затем ещё одну стоваттную лампу. Для страховки от несчастных разлётов деталек:)

Лампа, как предохранитель

Лампа должна мигнуть и потухнуть. Крайне желательно иметь осциллограф, чтобы иметь возможность посмотреть, что творится на микросхеме и транзисторах раскачки.

Попутно, тем кто не умеет пользоваться даташитами - учимся. Даташит и гугл помогают лучше форумов, если есть прокачанные навыки "гугление" и "переводчик с альтернативной точкой зрения".

Примерную схему блока питания нашёл в интернете. Схема очень даже простая (обе схемы можно сохранить в хорошем качестве):

В конечном итоге она получилась приблизительно вот такой, но это очень грубое приближение, не хватает много деталей!

Конструктив колонки был согласован и сопряжён с блоком питания и усилителем. Получилось просто и симпатично:

Справа - под обрезанным радиатором для видеокарты и компьютерным кулером находится усилитель, слева - его блок питания. Блок питания выдавал стабилизированные напряжения +-40 В со стороны плюсового напряжения. Нагрузка была что-то около 3,8 Ом (в колонке два динамика). Поместилось компактно и работает на ура!

Изложение материала достаточно не полное, упустил много моментов, так как дело было несколько лет назад. В качестве помощи к повторению могу порекомендовать схемы от мощных автомобильных усилителей низкой частоты - там есть двухполярные преобразователи, как правило, на этой же микросхеме - tl494.

Фото счастливого обладателя этого девайса:)

Так символично держит эту колонку, почти как автомат АК-47... Чувствует надёжность и скорый уход в армию:)

Напоминаем, что нас можно найти также в группе Вконтакте, где на каждый вопрос обязательно будет дан ответ!